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Abstract

This expository text tries to explain briefly and not too technically the
notions of stack and algebraic stack, emphasizing as an example the moduli
stack of vector bundles on an algebraic curve.

Introduction

The aim of this text is to explain what an algebraic stack is, in particular what
the moduli stack of vector bundles on an algebraic curve is. (At the Allahabad
conference, a shorter form of this introduction to stacks was followed by a brief
report on the paper [6] about the birational type of moduli stacks for vector bundles
with some extra structure.)

Algebraic stacks were introduced by Deligne-Mumford [3] and by M. Artin [1].
In order to motivate them, we recall the notion of fine moduli scheme and the usual
problem with its existence in the presence of automorphisms in section 1. Then we
define stacks as some sort of sheaves of groupoids in section 2, and finally we discuss
the algebraicity notions of Deligne-Mumford and of M. Artin in section 3.

Warning: In the present text, several technicalities are suppressed or oversim-
plified (in order not to obscure the basic ideas). For example, open coverings and
gluing are used freely without discussing the topology, where the correct thing would
be to specify an appropriate Grothendieck topology and replace gluing by descent.
Moreover, we use a simplified notion of prestack in order to avoid the technically
better, but less suggestive notion of fibered category; cf. [5, Exposé VI]. Also finite-
ness conditions are not systematically taken into account; for example, we omit the
condition that an algebraic stack has to be quasi-separated.

Full technical details about algebraic stacks can be found in the textbook [7] of
Laumon and Moret-Bailly, or in a book in preparation by Behrend, Conrad, Edidin,
Fulton, Fantechi, Göttsche and Kresch [2]. Expository texts have also been written
by Vistoli [10], Sorger [9] and Gomez [4].

1 Fine moduli schemes and why they don’t exist

Let k = k̄ be an algebraically closed field, and let C be a connected smooth projec-
tive algebraic curve of genus g ≥ 2 over k. We consider (algebraic) vector bundles
E of fixed rank r on C. Their basic discrete invariant is the degree deg(E) ∈ Z,
defined as the degree of the line bundle det(E) := ΛrE.

(Recall that the degree of a line bundle L on C is by definition the number of
zeros minus the number of poles of any nonzero rational section s of L, both counted
with multiplicities; this difference does not depend on the choice of s.)

“Classifying” vector bundles E on C of given rank r and degree d means under-
standing the set of isomorphism classes

Bunr,d := {E vector bdl. on C of rank r, deg. d}
/ ∼= .
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This set is roughly the set of points of some algebraic variety, the moduli space of
such vector bundles E. More precisely, Seshadri [8] constructed in 1967 a connected
smooth quasiprojective variety

Bunstab
r,d

of dimension r2(g−1)+1 over k whose set of k-valued points is ... not quite Bunr,d,
but at least the subset Bunstab

r,d ⊆ Bunr,d consisting of the isomorphism classes of
stable vector bundles E.

(Recall that a nonzero vector bundle E on C is called stable if

deg(E′)/rank(E′) < deg(E)/rank(E)

holds for every proper subbundle 0 6= E′  E.)
How to give the set Bunr,d (or Bunstab

r,d ) the structure of an algebraic variety
over k? One way to do this is to decide, for every variety S over k, which maps
of the underlying point sets S(k) → Bunr,d are actually morphisms of k-varieties.
The natural answer is this: such a map should be a morphism of k-varieties if and
only if it comes from a vector bundle E on C ×k S, in the sense that it sends every
point s ∈ S(k) to the isomorphism class of the restriction Es := E|C×{s}. This line
of thought motivates the notion of fine moduli scheme, which we recall now.

Definition 1.1. Let S be a k-scheme. We denote by

Bunr,d(S) := {E vector bdl. on C ×k S of rank r, deg. d}
/ ∼=

the set of isomorphism classes of rank r vector bundles E on C ×k S with constant
degree d; here the degree deg(E) is by definition the locally constant function on S
which assigns to each point s ∈ S the integer deg(Es).

Every morphism of k-schemes f : T → S induces a map

f∗ : Bunr,d(S) −→ Bunr,d(T ), [E ] 7→ [f∗E ]

by pullback; thus we get a contravariant functor

Bunr,d( ) : Schemes/k −→ Sets

from the category of schemes over k to the category of sets.

Definition 1.2. A scheme M over k is a fine moduli scheme for vector bundles E
of rank r and degree d on C if M represents the functor Bunr,d( ).

More explicitly, M is such a fine moduli scheme of vector bundles if

{ϕ : S →M k-morphism} = {E vector bdl. on C ×k S of rank r, deg. d}
/ ∼= (1)

where the equality sign means the existence of a bijection which is functorial in S.
By Yoneda’s lemma, the fine moduli scheme M is unique up to unique isomor-

phisms if it exists. Unfortunately, it doesn’t exist, i. e. the functor Bunr,d( ) is not
representable. To see why, we compare how both sides of (1) behave under gluing.
So assume given an open covering S =

⋃
i Ui of the k-scheme S.

• For any k-scheme M , a k-morphism ϕ : S →M is given by

– a k-morphism ϕi : Ui →M for each i

satisfying the condition

– ϕi = ϕj on the intersection Ui ∩ Uj for all i, j.
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• A vector bundle E on C ×k S is given by

– a vector bundle Ei on C ×k Ui for each i, and

– an isomorphism αij : Ei
∼−→ Ej over C ×k (Ui ∩ Uj) for each i, j,

satisfying the condition

– αil = αjl ◦ αij over C ×k (Ui ∩ Uj ∩ Ul) for all i, j, l.

We see that both sides of (1) behave fundamentally different under gluing. To make
this more precise, we recall some terminology.

Definition 1.3. i) A presheaf is a contravariant functor F : Schemes/k → Sets.
ii) A presheaf F is a sheaf if the following condition holds for every open covering

of k-schemes S =
⋃

i Ui:
Given a tuple (ϕi)i of elements ϕi ∈ F (Ui) such that ϕi and ϕj have the same

image in F (Ui ∩ Uj) for all i, j, there is a unique element ϕ ∈ F (S) whose image
in F (Ui) is ϕi for all i.

Now the above observations about gluing can be summarized as follows. The
presheaf represented by any scheme M over k is a sheaf, but it is easy to check
that the presheaf Bunr,d( ) is not a sheaf. Hence the latter is not representable, i. e.
there is no fine moduli scheme.

This is a typical problem. Functors of isomorphism classes like Bunr,d( ) are
usually not representable, the standard exception being isomorphism classes of ob-
jects without automorphisms. (In that case, the above isomorphisms αij are unique
if they exist, and the cocycle relation αil = αjl ◦ αij is automatically satisfied, so
the presheaf of isomorphism classes is actually a sheaf, and in fact in many cases
representable.)

The classical solution for this problem is the following. Instead of representing
the functor Bunr,d( ), we approximate it by a representable functor, as closely as
possible in a specific sense. The representing scheme is then called a coarse moduli
scheme. For example, Seshadri’s variety Bunstab

r,d is a coarse moduli scheme of stable
vector bundles E on C with rank r and degree d.

A more radical solution for this problem is given by the notion of stack. It is
motivated by the above observation that objects (e. g. vector bundles) don’t glue
like maps to a set. Even if we are just interested in isomorphism classes, we need
to keep track of actual isomorphisms (in particular of automorphisms) in order to
understand gluing. This leads to the idea that a moduli space should not be an
underlying set (of isomorphism classes) endowed with some geometric structure,
it should be an underlying groupoid (of objects and their isomorphisms) endowed
with some geometric structure. That’s roughly what a stack is.

2 Stacks

Definition 2.1. A groupoid is a category in which every morphism is invertible.

Example 2.2. The vector bundles E on C of rank r and degree d, together with
the isomorphisms of vector bundles as morphisms, form a groupoid.

Example 2.3. If a group G acts on a set X, then one has a quotient groupoid X/G:
its objects are the elements x ∈ X, its morphisms from x to x′ are the elements
g ∈ G satisfying g · x = x′, and its composition law is the multiplication in G.

Note that the isomorphism class of the object x in X/G is precisely the orbit
of the element x in X, whereas the automorphism group of the object x in X/G is
precisely the stabilizer of the element x in X.
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When replacing sets by groupoids, presheaves (in the sense of definition 1.3) get
replaced by prestacks, and sheaves get replaced by stacks; more precisely:

Definition 2.4. A prestack M over k consists of

• a groupoid M(S) for each k-scheme S,

• a functor f∗ :M(S)→M(T ) for each k-morphism f : T → S, and

• an isomorphism of functors cf,g : g∗f∗ ∼−→ (f ◦ g)∗ for each composable pair
of k-morphism g : U → T and f : T → S,

such that the isomorphisms cf,g satisfy the following two compatibility conditions:

• cf,idT
= idf∗ and cidS ,f = idf∗ for all k-morphisms f : T → S.

• The diagram of isomorphisms of functors

h∗g∗f∗
cg,hf∗ //

h∗cf,g

��

(g ◦ h)∗f∗

cf,g◦h

��
h∗(f ◦ g)∗

cf◦g,h

// (f ◦ g ◦ h)∗

commutes for all triples of k-morphisms h : V → U , g : U → T and f : T → S.

Example 2.5. The prestack Bunr,d of vector bundles E on C with rank r and
degree d consists of the following data.

• Objects of the groupoid Bunr,d(S) are vector bundles E on C ×k S with rank
r and (constant) degree d.

• Morphisms of the groupoid Bunr,d(S) are isomorphisms α : E ∼−→ E ′ of vector
bundles on C ×k S.

• The functor f∗ : Bunr,d(T ) → Bunr,d(S) is the usual pullback of vector
bundles along the k-morphism f : T → S.

• cf,g(E) is the usual canonical isomorphism between g∗f∗E and (f ◦g)∗E when-
ever g : U → T and f : T → S is a composable pair of k-morphisms.

If M is a prestack and f : T ↪→ S is an embedding of k-schemes, then we will
write E|T and α|T for the images inM(T ) of objects E and morphisms α inM(S).
If g : U ↪→ T is another embedding, then the isomorphism cf,g allows us to identify
(E|T )|U with E|U and (α|T )|U with α|U .

Just like a sheaf is a presheaf whose sections can be glued, a stack is a prestack
whose objects and morphisms can be glued; more precisely:

Definition 2.6. A prestack M over k is a stack if the following two conditions
hold for every open covering of k-schemes S =

⋃
i Ui:

• Given two objects E , E ′ of M(S) and for each i a morphism αi : E|Ui
→ E ′|Ui

in M(Ui) such that

αi|Ui∩Uj
= αj |Ui∩Uj

in M(Ui ∩ Uj) for all i, j,

there is a unique morphism α : E → E ′ in M(S) such that αi = α|Ui
for all i.
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• Given for each i an object Ei in M(Ui) and for each i, j an isomorphism
αij : Ei|Ui∩Uj → Ej |Ui∩Uj in M(Ui ∩ Uj) such that

αil = αjl ◦ αij in M(Ui ∩ Uj ∩ Ul) for all i, j, l,

there is an object E in M(S) and for each i an isomorphism βi : E|Ui
→ Ei in

M(Ui) such that βj = αij ◦ βi in M(Ui ∩ Uj) for all i, j.

Example 2.7. The gluing behavior of vector bundles described in section 1 means
that the prestack Bunr,d of example 2.5 is actually a stack.

Both prestacks and stacks over k form 2-categories: A 1-morphism Φ :M→M′
is given by a functor Φ(S) : M(S) → M′(S) for each k-scheme S, together with
an isomorphism of functors f∗ ◦ Φ(S) ∼= Φ(T ) ◦ f∗ for each k-morphism f : T → S
satisfying appropriate compatibility conditions; a 2-morphism τ : Φ1 ⇒ Φ2 is given
by a natural transformation τ(S) : Φ1(S) ⇒ Φ2(S) for each k-scheme S satisfying
appropriate compatibility conditions.

Recall that for every presheaf, one has an associated sheaf (obtained by the
sheafification process). For every prestack, one similarly has an associated stack,
obtained by an analogous process called stackification.

3 Algebraic stacks

A sheaf in the sense of definition 1.3 is not yet a very geometric object; it only yields
a geometric object (namely a fine moduli scheme) if it is representable. Similarly,
a stack is not yet a very geometric object; it only is so if it is “algebraic”, i. e. if it
satisfies some further condition which we explain next. There are two variants of
this condition, one due to Deligne-Mumford [3] and one due to M. Artin [1].

Definition 3.1. A groupoid scheme over k is a groupoid object in the category
Schemes/k of schemes over k.

More explicitly, a groupoid scheme over k consists of two k-schemes X, R and
five k-morphisms

e : X → R, s : R→ X, t : R→ X, ◦ : R×s,X,t R→ R and i : R→ R,

such that for each k-scheme S, the sets X(S) and R(S) of k-morphisms S → X and
S → R together with the induced maps

e∗ : X(S) −→ R(S), s∗ : R(S) −→ X(S), t∗ : R(S) −→ X(S),
◦∗ : R(S)×s∗,X(S),t∗ R(S) −→ R(S) and i∗ : R(S) −→ R(S)

form a (small) groupoid, in which X(S) is the set of objects, R(S) is the set of mor-
phisms, e∗ sends each object to its identity automorphism, s∗ sends each morphism
to its source, t∗ to its target, ◦∗ sends each composable pair of morphisms to their
composition, and i∗ sends each morphism to its inverse.

Note that a groupoid scheme (X,R, e, s, t, ◦, i) over k induces a prestack M
over k, by sending each k-scheme S to the groupoid M(S) with objects X(S) and
morphisms R(S) that has just been described.

Example 3.2. Let a group scheme G over k act on a scheme X over k. In analogy
to example 2.3, one has a quotient groupoid scheme (X,R := G ×k X, e, s, t, ◦, i)
over k where s : G×kX → X is the second projection, t : G×kX → X is the group
action, and ◦ : G×k G×k X → G×k X is given by the group multiplication.
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Definition 3.3. Let a group scheme G over k act on a scheme X over k. The
stack quotient X/G is the stackification of the prestack M induced by the groupoid
scheme (X,G×k X, . . .) described in example 3.2.

Remark 3.4. The stack quotient X/G contains information not only about the
orbit sets, but also about the stabilizer groups, cf. example 2.3.

Example 3.5. Let X = Spec(k) be just one point, and let the group scheme G
over k act trivially on X. The resulting stack quotient BG := X/G is called the
classifying stack associated to G. It is easy to check that BG(S) is precisely the
groupoid of locally trivial principal G-bundles over S for every k-scheme S.

Definition 3.6. A stack M over k is algebraic in the sense of Artin (resp. in
the sense of Deligne-Mumford) if M is (1-isomorphic to) the stackification of the
prestack induced by a groupoid scheme (X,R, e, s, t, ◦, i) over k in which the mor-
phisms s, t : R→ X are both smooth (resp. étale).

A stackM that is algebraic in the sense of Artin (resp. of Deligne-Mumford) is
usually called an Artin stack (resp. Deligne-Mumford stack).

Example 3.7. Let a group scheme G over k act on a scheme X over k.

i) Suppose that G is smooth over k. Then X/G is an Artin stack. In particular,
the classifying stack BG is an Artin stack in this case.

ii) Suppose that G is étale over k. Then X/G is a Deligne-Mumford stack. In
particular, the classifying stack BG is a Deligne-Mumford stack in this case.

Remark 3.8. One can guess how to apply geometric notions to a quotient stack
X/G: the natural thing to do is to apply the same notions to the scheme X in a
G-equivariant way. This actually works, no matter how bad the action of G on X is
(maybe huge stabilizers, non-closed orbits, etc.). Thus the geometry of the quotient
stack X/G is really just the G-equivariant geometry of X, even if this would not at
all be the case for any kind of orbit space X/G because the action is bad.

Remark 3.9. The above way of applying geometric notions to quotient stacks
X/G can often be generalized to stacks given by a groupoid scheme (X,R, . . .) in a
rather formal way. In some sense, this is one reason why algebraic stacks are quite
geometric objects, even if general stacks aren’t.

Proposition 3.10. The stack Bunr,d is algebraic in the sense of Artin.

Sketch of the proof. One can define what an open covering of a stack is. A stack is
algebraic if it admits an open covering by algebraic stacks. Choose a very ample
line bundle O(1) on C, and let

P (n) := d+ r(1− g + ndegO(1))

be the common Hilbert polynomial of all vector bundles E on C with rank r and
degree d. An appropriate open subscheme in one of Grothendieck’s Quot-schemes

Xn ⊆ QuotP (O(−n)P (n))

is a fine moduli scheme of pairs (E,B) consisting of a vector bundles E on C with

• rank(E) = r and deg(E) = d,

• E(n) := E ⊗O(n) is generated by its global section,

• the Zariski sheaf cohomology H1(C,E(n)) vanishes,
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and a basis B of H0(E(n)). Gn := GLP (n) acts on Xn by changing this basis B.
Because the above conditions on E are open conditions, Xn/Gn is an open substack
of Bunr,d. Since every vector bundle E on C with rank r and degree d satisfies them
for n� 0, we obtain an open covering

Bunr,d =
⋃
n

Xn/Gn

which shows that Bunr,d is an Artin stack because the Xn/Gn are.

Remark 3.11. Bunr,d is not a Deligne-Mumford stack, because vector bundles
have automorphism groups of positive dimension.

Example 3.12. The moduli stack Mg of smooth projective curves over k with
fixed genus g ≥ 2 is given by the following groupoid for each k-scheme S:

• The objects of Mg(S) are the smooth projective morphisms π : C → S all of
whose geometric fibers are connected curves of genus g.

• The morphisms inMg(S) from π : C → S to π′ : C′ → S are the isomorphisms
C ∼−→ C′ of schemes over S.

Mg is known to be a Deligne-Mumford stack [3] (and hence also an Artin stack).

Remark 3.13. An Artin stackM given by a groupoid scheme (X,R, e, s, t, ◦, i) is
called smooth if X is smooth. The dimension of M is by definition the dimension
of X minus the relative dimension of R over X.

For example, the stack quotient X/G of a k-scheme X modulo a smooth group
scheme G over k is smooth if and only if X is, and dim(X/G) = dim(X)− dim(G).
In particular, BG is smooth of dimension −dim(G).

Remark 3.14. Bunr,d is known to be smooth of dimension r2(g−1), one less than
the dimension of the coarse moduli scheme Bunstab

r,d . This difference comes from
the one-dimensional (scalar) automorphism groups of stable vector bundles which
Bunstab

r,d does not see, but which the stack Bunr,d does take into account.

Remark 3.15. The stack Mg is known to be smooth of dimension 3g − 3.
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