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Introduction

This text deals with vector bundles over a curve X. It consists of two independent parts: In the
first two chapters, X is a smooth projective curve with a marked point P over an algebraically
closed field, and the vector bundles are endowed with parabolic structures, i. e. with a chain of
vector subspaces in the fibre over P (the quasiparabolic structure) and some real numbers (the
weights). In the third chapter, X is an arithmetic curve, i. e. the set of places of a number field,
and the vector bundles are metrized bundles in the sense of Arakelov geometry.

There is some analogy between parabolic and Arkelov vector bundles: The latter are given by
(archimedean) norms at the infinite places, and the former can be described by non-archimedean
norms at the marked point(s) like in [HJS98]. However, the questions, methods or results of the
first two chapters are not analogous to those of the third chapter.

The subject of the first two chapters is a conjecture of H. Boden and Y. Hu about their
desingularisation of the moduli scheme of semistable parabolic bundles. Recall that the notion of
(Mumford) semistability depends on the weights. Boden and Hu observed that a slight variation
of the weights leads to a desingularisation of the moduli scheme, and they conjectured that one
can always obtain a small resolution this way.

In the present text, it is proved that this conjecture holds for bundles of rank up to eight,
but not for rank nine and beyond. This is a consequence of theorem 2.2.5 which states that
the Boden-Hu desingularising map is a Zariski-locally trivial fibration over each Jordan-Hölder
stratum of the singular moduli scheme and gives a quite precise description of the typical fibre.

The starting point for the proof of theorem 2.2.5 is the observation that the fibres in question
parameterize multiple extensions of quasiparabolic bundles. By an extension of several given
bundles, we mean a bundle E together with a chain of subbundles such that the resulting sub-
quotients of E are isomorphic to the given bundles. The first chapter is devoted to the study of
such extensions; its main results are the construction and description of fine moduli schemes of
extensions.

Theorem 2.2.5 will then follow from an intimate relation between the fibres of the Boden-Hu
map and moduli schemes of extensions. (For extensions of two bundles, this relation has already
been noted and exploited by Boden and Hu.)

The dimension formulas of theorem 2.2.5 reduce the Boden-Hu conjecture to an elementary
question about weights, not involving the curve X any more. This elementary problem is studied
in the last three sections of chapter two.

The background of the independent chapter three can be described by the following task:
Prove the existence of Arakelov vector bundles E over the arithmetic curve X without nonzero
global sections and with the degree of E as large as possible. If X is the set of places of Q, then
this is the problem of lattice sphere packing. The analogous question for vector bundles over
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algebraic curves has a simple answer: The degree is maximal if the Euler characteristic vanishes,
so the maximal slope is g − 1 by Riemann-Roch.

G. Faltings has proved that for each semistable vector bundle E over an algebraic curve, there
is another vector bundle F such that E ⊗ F has no global sections and slope g − 1. (See [Fal93]
and [Fal96] where this result is interpreted in terms of theta functions and used to construct
moduli schemes of vector bundles without appeal to Mumford’s Geometric Invariant Theory.)
The main result 3.4.6 of chapter three can be seen as an arithmetic analogue of this theorem;
it states that for each semistable Arakelov vector bundle E , there is another Arakelov bundle F
such that E ⊗ F has no global sections and slope larger than a certain bound.

The proof of 3.4.6 is inspired by that of the Minkowski-Hlawka existence theorem for sphere
packings: It is not constructive and uses integration over a space of Arakelov bundles (with
respect to some Tamagawa measure). With an adelic version of Siegel’s mean value formula, the
average number of nonzero global sections can be computed; if it is less than one, at least one of
the bundles has no global sections.

In contrast to its algebraic counterpart g − 1, the resulting bound on the slope of E ⊗ F
depends on the rank of F . It is best if the rank of E is one, so considering tensor products this
way does not produce better sphere packings than the original Minkowski-Hlawka theorem.

I would like to thank my thesis adviser G. Faltings for his suggestions, his support and
encouragement. Especially the third chapter is based on his ideas. I also had many fruitful
discussions with my colleagues in Bonn, especially with Jochen Heinloth. Markus Rosellen has
drawn my attention to the paper of Boden and Hu. The work was supported by a grant of the
Max-Planck-Institut in Bonn and by the excellent working conditions there. For some time, the
author was supported by the university of Bonn.
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Chapter 1

Multiple extensions of quasiparabolic
bundles

1.1 Quasiparabolic bundles

This section recalls the notion of (families of) vector bundles with quasiparabolic structures that
was introduced in [MeSe80]. The main purpose is to fix notation and to collect some basic facts.

Once and for all, we fix a smooth connected projective curve X of genus g over an algebraically
closed field k and a closed point P ∈ X(k). Furthermore, we fix a positive integer N which will
later become the number of weights.

We will always use the following conventions: A vector bundle E over a scheme S is a locally
free coherent sheaf. A subbundle E ′ of E is a coherent subsheaf of E that is locally a direct
summand. We denote by Tot(E) = TotS(E) the total space of E; this is a scheme over S.

Definition 1.1.1 Let S be a scheme over k, considered as a parameter space.

i) A quasiparabolic bundle E over X ×k S is a vector bundle Ě over X ×k S together with a
filtration of its restriction ĚP to {P} × S by subbundles

ĚP = F0ĚP ⊇ F1ĚP ⊇ . . . ⊇ FN ĚP = 0.

ii) A morphism φ : E → E ′ of quasiparabolic bundles E and E ′ over X ×k S is a morphism of
vector bundles φ̌ : Ě −→ Ě ′ whose restriction φ̌P : ĚP −→ Ě ′P respects the given filtrations,
i. e. satisfies

φ̌P (FnĚP ) ⊆ FnĚ
′
P

for all n ≤ N .

We have the pullback f ∗E of the quasiparabolic bundle E along a morphism f : T → S of
k-schemes; it is the quasiparabolic bundle over X ×k T that consists of the vector bundle f ∗Ě
and the filtration (f ∗FnĚP )n≤N . In particular, the fibre Es of E over a point s of S is its pullback
to the spectrum of the residue field k(s).

Such quasiparabolic bundles have several discrete invariants, namely the rank rk(E), the
underlying degree deg(Ě) and the multiplicities

m1 := rk(ĚP/F1ĚP ) , m2 := rk(F1ĚP/F2ĚP ) , . . . , mN := rk(FN−1ĚP ) .
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All these are locally constant functions on S with integer values and will often be fixed. Note
that the rank equals the sum of the multiplicities. We collect the discrete invariants in a single
notion:

Definition 1.1.2 A multiplicity vector m is a sequence of integers

m = (r, ď,m1, . . . ,mN)

such that all the mn are nonnegative and

r = m1 +m2 + · · ·+mN

holds.

Of course, the multiplicity vector of a quasiparabolic bundle E over X ×k S (near some point s
of S) consists of its rank r, its underlying degree ď and its multiplicities m1, . . . ,mN (near s).

Remark 1.1.3 Although it may seem to be a bit unusual, we deliberately allow zero multiplici-
ties. This has a consequence for the notion of isomorphism: Two quasiparabolic bundles E and
E ′ cannot be isomorphic if their multiplicity vectors m and m′ are different, even if they have the
same nonzero multiplicities like m = (1, ď, 1, 0) and m′ = (1, ď, 0, 1).

Definition 1.1.4 Let S be a k-scheme. A collection of quasiparabolic bundles over X ×k S and
morphisms

0 −→ E1 ι−→ E
π−→ E2 −→ 0 (1.1)

is a (short) exact sequence if the morphisms of the underlying vector bundles

0 −→ Ě1 ι̌−→ Ě
π̌−→ Ě2 −→ 0

form an exact sequence, and their restrictions to {P} × S induce an exact sequence

0 −→ FnĚ
1
P −→ FnĚP −→ FnĚ

2
P −→ 0

for each n ≤ N .

If (1.1) is an exact sequence, then the multiplicity vector of E is the sum of the multiplicity
vectors of E1 and E2.

We say that a quasiparabolic bundle E ′ is a subbundle of a quasiparabolic bundle E if Ě ′ is
a subbundle of Ě and the condition

FnĚ
′
P = Ě ′P ∩ FnĚP

is satisfied for all n ≤ N .
If (1.1) is an exact sequence, then ι is an isomorphism onto a subbundle of E. Conversely, if

we have a subbundle E ′ of E, then we can define the (quasiparabolic) quotient bundle E/E ′ by
the vector bundle Ě/Ě ′ and the filtration

(Ě/Ě ′)P = F0ĚP/F0Ě
′
P ⊇ F1ĚP/F1Ě

′
P ⊇ . . . ⊇ FN ĚP/FN Ě

′
P = 0,
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thus obtaining an exact sequence

0 −→ E ′ −→ E −→ E/E ′ −→ 0.

We say that a morphism of quasiparabolic bundles φ : E → E ′′ is surjective if the induced
morphisms of vector bundles

φ̌ : Ě −→ Ě ′′ and φ̌P : FnĚP −→ FnĚ
′′
P

are all surjective. In this case, the kernel of φ is a subbundle E ′ of E, and

0 −→ E ′ −→ E
φ−→ E ′′ −→ 0

is an exact sequence.
Occasionally, it will be useful to work only over open subsets of X ×k S. Here is the obvious

definition:

Definition 1.1.5 Let U be an open subscheme of X ×k S.

i) If U ∩ ({P} × S) is empty, then a quasiparabolic bundle E over U is just a vector bundle
over U . Otherwise, it is a vector bundle Ě over U together with a filtration of its restriction
ĚP to U ∩ ({P} × S) by subbundles

ĚP = F0ĚP ⊇ F1ĚP ⊇ . . . ⊇ FN ĚP = 0.

ii) If U ∩ ({P}×S) is empty, then a morphism φ : E → E ′ of quasiparabolic bundles E and E ′

over U is just a morphism of vector bundles. Otherwise, it is a morphism of vector bundles
φ̌ : Ě −→ Ě ′ whose restriction φ̌P : ĚP −→ Ě ′P respects the given filtrations.

Note that one can glue quasiparabolic bundles. More precisely, let

X ×k S = U1 ∪ U2

be an open covering and assume given quasiparabolic bundles Ei over Ui together with an iso-
morphism

φ : E2

∣∣
U1∩U2

∼−→ E1

∣∣
U1∩U2

.

Then one can form the quasiparabolic bundle

E := E1 ∪φ E2.

Proposition 1.1.6 Let E and E ′ be quasiparabolic bundles over X ×k S, and define the OX×kS-
module sheaf of (local) morphisms Hom(E,E ′) by

Γ(U,Hom(E,E ′)) := Hom(E
∣∣
U
, E ′
∣∣
U

).

i) Hom(E,E ′) is a vector bundle over X ×k S. As locally constant functions on S, its rank is
r · r′ and its degree is

rď′ − r′ď−
∑

1≤n′<n≤N

mn ·m′n′

where (r, ď,m1, . . . ,mN) and (r′, ď′,m′1, . . . ,m
′
N) are the multiplicity vectors of E and E ′,

respectively.
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ii) Hom commutes with base change. More precisely, the canonical morphism

f ∗Hom(E,E ′) −→ Hom(f ∗E, f ∗E ′)

is an isomorphism for every morphism of k-schemes f : T −→ S.

iii) If (1.1) is an exact sequence of quasiparabolic bundles, then

0 −→ Hom(E ′, E1)
ι∗−→ Hom(E ′, E)

π∗−→ Hom(E ′, E2) −→ 0

and
0 −→ Hom(E2, E ′)

π∗−→ Hom(E,E ′)
ι∗−→ Hom(E1, E ′) −→ 0

are also exact.

Proof: All statements are local in S, so we may assume without loss of generality that S is
affine. Then {P} × S is affine as well, so all our subbundles are direct summands. Choosing
complements gives us an exact sequence

0→ Hom(E,E ′)→ Hom(Ě, Ě ′)→
⊕

1≤n′<n≤N

Hom(
Fn−1ĚP

FnĚP
,
Fn′−1Ě

′
P

Fn′Ě ′P
)→ 0 (1.2)

of OX×kS-module sheaves in which the last term is a vector bundle over {P} × S of rank∑
n′<nmnm

′
n′ . Everything follows from this:

First of all, it implies that Hom(E,E ′) is coherent over X ×k S and flat over S as the other
terms are.

Secondly, ii follows from it: Of course the middle term commutes with base change, and the
last term also does if we choose our complements over T by pulling back the chosen complements
over S. Now ii follows from the flatness of the last term.

Thirdly, it immediately implies i if S is the spectrum of a field. The case of general S follows
from this using ii and the local criterion for flatness.

Finally, iii is deduced as follows: Let (1.1) be an exact sequence of quasiparabolic bundles.
(1.2) is functorial with respect to ι and π if we choose the required complements for E1 and E2

first and map the former, lift the latter to E to get the complements there. Now the second and
the third term of (1.2) are exact functors of both variables, so the same holds for the first term
by the 3× 3-lemma for coherent sheaves. 2

Note that the degree of the vector bundleHom(E,E ′) depends only on the multiplicity vectors
of E and E ′. In later sections, especially the antisymmetric part of this function will be of interest,
so we introduce a symbol for it:

Definition 1.1.7 Let m = (r, ď,m1, . . . ,mN) and m′ = (r′, ď′,m′1, . . . ,m
′
N) be multiplicity vec-

tors. The integer valued, antisymmetric function ∆ of m and m′ is defined by

∆(m,m′) = 2rď′ +
∑
n<n′

mnm
′
n′ − 2r′ď−

∑
n′<n

mnm
′
n′ .

Corollary 1.1.8 If m = (r, ď,m1, . . . ,mN) and m′ = (r′, ď′,m′1, . . . ,m
′
N) are the multiplicity

vectors of quasiparabolic bundles E and E ′ over X×kS, then the degree of the sheaf of morphisms
from E to E ′ is

deg(Hom(E,E ′)) = −rr
′

2
+

N∑
n=1

mnm
′
n

2
+

1

2
∆(m,m′).
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Proposition 1.1.6 also has consequences for the behavior of Hom under base change. Remember
that a coherent sheaf F over X ×k S is called cohomologically flat if p∗F and R1p∗F are vector
bundles over S and commute with any base change f : T → S, the latter meaning that the
natural morphism

f ∗Rip∗F −→ RipT,∗f
∗F

is an isomorphism for i = 0, 1. Here pT : X×k T −→ T denotes the pullback of p : X×k S −→ S.
Recall that E is simple if the canonical map from the residue field k(s) to End(Es) is an

isomorphism for every point s of S. Part ii of the following corollary states in particular that
End(E) := Hom(E,E) is cohomologically flat if E is simple.

Corollary 1.1.9 Let E and E ′ be quasiparabolic bundles over X ×k S.

i) We say that Hom(E,E ′) vanishes fibrewise if Hom(Es, E
′
s) = 0 holds for all points s of S.

If this is the case, then Hom(E,E ′) is cohomologically flat and p∗Hom(E,E ′) vanishes.

ii) If there is a morphism φ : E → E ′ such that

·φs : k(s) −→ Hom(Es, E
′
s)

is an isomorphism for all points s of S, then Hom(E,E ′) is cohomologically flat and

·φ : OS −→ p∗Hom(E,E ′)

is an isomorphism, too.

iii) If the dimension of Hom(Es, E
′
s) is at most one for each point s of S, then there is a unique

closed subscheme Z of S with the following universal property:

Any k-morphism f : T → S factors through Z if and only if Hom(f ∗E, f ∗E ′) is cohomo-
logically flat and pT,∗Hom(f ∗E, f ∗E ′) is a line bundle.

Proof: We use a main result of [EGA III]; applied to Hom(E,E ′), it states that locally in S,
there is a complex of length one consisting of vector bundles over S

F0 δ−→ F1

which represents the cohomology in the sense that for every base change f : T → S, the direct
images

pT,∗f
∗Hom(E,E ′) and R1pT,∗f

∗Hom(E,E ′)

are the kernel and the cokernel of its pullback

f ∗F0 δT−→ f ∗F1.

All claims are local with respect to S, so we may assume that S is the spectrum of a k-algebra
A and that the complex of finitely generated free A-modules

M0 δ−→M1

represents the cohomology of Hom(E,E ′).
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The hypothesis of i means that δ is injective modulo every prime ideal of A. This implies that
δ is an isomorphism onto a direct summand: For this step, we may assume that A is local with
maximal ideal m, and then injectivity modulo m means that the matrix of δ has maximal rank
modulo m, so it contains a maximal quadratic submatrix which is invertible. Hence M0 is indeed
a direct summand in M1, and i follows.

Under the assumptions of ii, the multiplication with φ is a linear map

A −→M0

which is injective modulo all prime ideals and hence an isomorphism onto a direct summand by
the argument just given. δ vanishes on its image, and the induced map

M0/A −→M1

is also injective modulo all prime ideals by assumption, so it is an isomorphism onto a direct
summand again, proving ii.

Under the hypothesis of iii, the rank of δ is at least r0 − 1 at every point of S where ri is the
rank of M i. So the Fitting ideal

im
(

Λr0−1M1 ⊗ Λr0−1(M0)dual −→ A
)

is not contained in any maximal ideal, i. e. is all of A. Let Z be the closed subscheme of S defined
by the previous Fitting ideal

im
(

Λr0M1 ⊗ Λr0(M0)dual −→ A
)
.

We check that Z has the universal property iii.
Let B be an A-algebra, and denote by f : T → S the corresponding affine morphism. By

[Eis95, Proposition 20.8], f factors through Z if and only if the cokernel of δ ⊗A B is locally free
of rank r1 − r0 + 1. But the latter is satisfied if and only if Hom(f ∗E, f ∗E ′) is cohomologically
flat and pT,∗Hom(f ∗E, f ∗E ′) is a line bundle on T . 2

1.2 Ordered extensions

We keep the assumptions of the previous section: X is a smooth projective curve over k = k̄
with a marked point P , and we still fix the length N of the filtrations belonging to quasiparabolic
structures.

Remark 1.2.1 In this section and in the next one, it is perfectly possible to take N = 1. In
this case, a quasiparabolic bundle is nothing but a vector bundle, so everything proved about
multiple extensions of quasiparabolic bundles will contain statements about vector bundles as a
special case.

Definition 1.2.2 Let E1, . . . , EL be quasiparabolic bundles over X ×k S where S is a k-scheme.

i) An ordered extension of E1, . . . , EL is a quasiparabolic bundle E over X×k S together with
a chain of (quasiparabolic) subbundles

0 = F 0E ⊆ F 1E ⊆ . . . ⊆ FLE = E

whose subquotient F lE
/
F l−1E is locally in S isomorphic to El for all l.
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ii) A rigidification of the ordered extension E =
(
E, (F lE)l≤L

)
is a sequence of isomorphisms

ηl : F lE
/
F l−1E

∼−→ El l = 1, . . . , L.

iii) An isomorphism of rigidified ordered extensions E and E ′ of E1, . . . , EL is an isomorphism
of quasiparabolic bundles E → E ′ respecting the given subbundles and isomorphisms.

Example 1.2.3 The so-called trivial extension

Etriv := E1 ⊕ E2 ⊕ . . .⊕ EL

is a rigidified ordered extension of E1, . . . , EL in an obvious way.

Example 1.2.4 Choose an open affine covering X = U ∪ V of our curve X and assume that S
is affine so that

X ×k S = (U ×k S) ∪ (V ×k S)

is also an open affine covering. With respect to this covering, we assume given a Čech cochain

γ ∈ C1

(⊕
l1<l2

Hom(El2 , El1)

)
.

Then the quasiparabolic bundle

E := Etriv
∣∣
U×kS

∪id+γ E
triv
∣∣
V×kS

is a rigidified ordered extension of E1, . . . , EL in a natural way.

The pullback f ∗E of a rigidified ordered extension of E1, . . . , EL along a morphism f : T → S
is again a rigidified ordered extension, namely of f ∗E1, . . . , f ∗EL. Thus there is a moduli functor
of rigidified ordered extensions, defined on the category of schemes over S. The aim of this
section is to prove its representability; as usual, this can only be true if our extensions have no
automorphisms. This is why we have introduced rigidifications:

Lemma 1.2.5 Let E1, . . . , EL be quasiparabolic bundles over X ×k S for some k-scheme S.
Assume that Hom(El2 , El1) vanishes fibrewise for all l1 < l2 ≤ L. Then every automorphism φ
of a rigidified ordered extension E of E1, . . . , EL is the identity.

Proof: The restriction of φ to FL−1E is an automorphism of a rigidified ordered extension of
E1, . . . , EL−1. Using induction on L, we may assume that this restriction is the identity. This
means that we have a commutative diagram with exact rows

0 // FL−1E // E //

φ

��

EL // 0

0 // FL−1E // E // EL // 0.

We consider φ − id : E → E. This morphism vanishes on the subbundle FL−1E of E, so it
induces a morphism EL → E on the corresponding quotient bundle. Its image must be contained
in FL−1E as the composition EL → E → EL is also zero. But according to corollary 1.1.9.i,
there are no nonzero morphisms from EL to FL−1E because Hom(EL, FL−1E) vanishes fibrewise.
Hence φ = id. 2

Note that the notion of an isomorphism of rigidified ordered extensions also makes sense over
open subschemes U of X ×k S.
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Lemma 1.2.6 If U is an affine open subscheme of X×kS, then every rigidified ordered extension
E of E1, . . . , EL is over U isomorphic to the trivial one Etriv.

Proof: The rigidification gives us morphisms ηl : F lE −→ El. Their restrictions to U can be
extended to morphisms

φl : E
∣∣
U
−→ El

∣∣
U

using proposition 1.1.6. The direct sum⊕
l

φl : E
∣∣
U
−→ Etriv|U

is the required isomorphism of rigidified ordered extensions. 2

In the case L = 2, the set of isomorphism classes of rigidified ordered extensions of E1, E2

is just the usual (Yoneda) Ext1-group of homological algebra. We have the standard relation to
cohomology:

Note 1.2.7 If S is an affine k-scheme, then there is a canonical bijection between the Zariski
cohomology group

H1(X ×k S,Hom(E2, E1))

and the (set of isomorphism classes of) rigidified ordered extensions of the quasiparabolic bundles
E1, E2 over X ×k S.

Proof: The cohomology group in question is the set of isomorphism classes of torsors under
G := Hom(E2, E1), i. e. of sheaves of sets on X ×k S on which the sheaf of (abelian) groups G
acts principally.

If E is an extension of E1, E2, then we have an exact sequence

0 −→ E1 −→ E
π−→ E2 −→ 0.

Because the functor Hom(E2, . ) is exact, the inverse image of the identity section under

π∗ : Hom(E2, E) −→ Hom(E2, E2)

is such a G-torsor. This defines a map from the set of extension classes to the cohomology group
in question.

The inverse map can be described as follows: Our sheaf of groups G acts on E1 ⊕ E2 by the
formula

φ · (e1, e2) := (e1 + φ(e2), e2)

for local sections e1, e2 and φ of Ě1, Ě2 and G. Hence we can twist it with any G-torsor T ,
obtaining a quasiparabolic bundle

E := (E1 ⊕ E2)×G T

which is an extension of E1, E2.
One checks easily that these two maps are inverse to each other. 2

(If S is just the spectrum of k, then a different proof of this note by embedding into an abelian
category can be found in [Hof99].)
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Corollary 1.2.8 Let E1 and E2 be quasiparabolic bundles over X ×k S for some k-scheme
S. Assume that Hom(E2, E1) vanishes fibrewise so that the first higher direct image sheaf
R1p∗Hom(E2, E1) is a vector bundle over S. Then its total space

TotS
(
R1p∗Hom(E2, E1)

)
−→ S

is a fine moduli scheme of rigidified ordered extensions of E1, E2.

The following main result of this section partially generalizes the preceding statement to
ordered extensions of L ≥ 3 quasiparabolic bundles.

Theorem 1.2.9 Let S be a k-scheme, and let E1, . . . , EL be quasiparabolic bundles over X ×k S
such that Hom(El2 , El1) vanishes fibrewise for all l1 < l2 ≤ L.

i) There is a fine moduli scheme

Ext(EL, . . . , E1) −→ S

of rigidified ordered extensions of E1, . . . , EL.

ii) If S is affine, then there is a non-canonical isomorphism of S-schemes

Ext(EL, . . . , E1) ∼= TotS

(
R1p∗

⊕
l1<l2

Hom(El2 , El1)

)
. (1.3)

Proof: Because rigidified ordered extensions of pullbacks of the given bundles have no automor-
phisms other than the identity, the moduli functor in question is a Zariski sheaf, and it suffices
to prove its representability locally in S. We assume without loss of generality that S is affine,
say the spectrum of a k-algebra A.

In contrast to the special case L = 2 treated above, we need to make the following choices
here to construct the isomorphism (1.3):

We choose a covering X = U ∪ V of our curve X by two open affine subschemes and consider
Čech cochains with respect to the resulting open affine covering

X ×k S = (U ×k S) ∪ (V ×k S).

For each pair of indices l1 < l2 ≤ L, we choose an A-module of 1-cochains

H̃1(l2, l1) ⊆ C1
(
Hom(El2 , El1)

)
that maps isomorphically onto the cohomology group H1

(
Hom(El2 , El1)

)
; this is possible as the

latter is projective as an A-module by corollary 1.1.9.i.
We will prove that the total space of

⊕
l1<l2

H̃1(l2, l1) represents our moduli functor. It suffices
to show the following: If E is a rigidified ordered extension of f ∗E1, . . . , f ∗EL where f : T → S
is the affine morphism corresponding to an A-algebra B, then there is a unique cochain

γ ∈
⊕
l1<l2

H̃1(l2, l1)⊗A B ⊆ C1

(⊕
l1<l2

Hom(f ∗El2 , f ∗El1)

)
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such that as a rigidified ordered extension, E is isomorphic to

f ∗Etriv
∣∣
U×kT

∪id+γ f
∗Etriv

∣∣
V×kT

.

Just to simplify the notation, we assume T = S, i. e. B = A and f = id. (This means no
loss of generality because H̃1(l2, l1)⊗AB also maps isomorphically to H1

(
Hom(f ∗El2 , f ∗El1)

)
by

cohomological flatness.)
So E is now a rigidified ordered extension of E1, . . . , EL. By lemma 1.2.6, we can trivialize it

over U ×k S and over V ×k S. Hence there is a 1-cochain

υ ∈ C1

(⊕
l1<l2

Hom(El2 , El1)

)
such that E is isomorphic to

Etriv
∣∣
U×kS

∪id+υ E
triv
∣∣
V×kS

.

Of course, the trivialisations of E over U ×k S and over V ×k S are not unique. We can alter
them by automorphism id +φU and id +φV of the trivial extension over U ×k S and over V ×k S;
here

φ = (φU , φV ) ∈ C0

(⊕
l1<l2

Hom(El2 , El1)

)
is a Čech cochain. If we do this, then the gluing isomorphism id + υ gets replaced by (id + φU) ◦
(id + υ) ◦ (id + φV )−1. So the theorem is a consequence of the following computation. 2

Lemma 1.2.10 For each Čech cochain υ ∈ C1
(⊕

l1<l2
Hom(El2 , El1)

)
, there are unique cochains

φ = (φU , φV ) ∈ C0

(⊕
l1<l2

Hom(El2 , El1)

)
and γ ∈

⊕
l1<l2

H̃1(l2, l1)

such that the following equation of automorphisms of Etriv over (U ∩ V )×k S holds:

(id + γ) ◦ (id + φV ) = (id + φU) ◦ (id + υ) (1.4)

Proof: The quasiparabolic bundle Etriv has a natural grading; we denote by

Endd(Etriv) :=
L−d⊕
l=1

Hom(El+d, El)

its sheaf of endomorphisms of degree −d for d = 1, . . . , L − 1. The component of our equation
(1.4) in degree −d reads

γd − δ(φd) = υd +
∑

d′,d′′≥1
d′+d′′=d

(
φd
′

U ◦ υd
′′ − γd′′ ◦ φd′V

)
(1.5)

where δ is the Čech coboundary, defined by δ(φ) = φU − φV .
If γ1, φ1, . . . , γd−1, φd−1 are given, then the right hand side of (1.5) is determined, and this

equation has a unique solution (γd, φd) because δ is injective and H̃1 is mapped isomorphically
onto its cokernel.

Component by component, this finally shows that the equation (1.4) has a unique solution,
too. 2
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Question 1.2.11 If S is not affine, does (1.3) still hold? If not, what can be said about the
obstruction?

Remark 1.2.12 Part ii states in particular that locally in S, the moduli scheme Ext(EL, . . . , E1)
is simply a relative affine space. Its dimension can be expressed in terms of the multiplicity vector

m(l) = (r(l), ď(l),m
(l)
1 , . . . ,m

(l)
N ) of El

by means of corollary 1.1.8 (and Riemann-Roch); the result is

dim Ext(EL, . . . , E1) = −
∑
l1<l2

χ
(
Hom(El2 , El1)

)
=

1

2

∑
l1<l2

(
(2g − 1)r(l1) · r(l2) −

N∑
n=1

m(l1)
n ·m(l2)

n + ∆
(
m(l1),m(l2)

))
.

1.3 Unordered extensions

As before, we work over a pointed curve (X/k, P ) and study quasiparabolic bundles with a fixed
length N of the filtration over P . This section will have analogies with the previous one, the
main difference being that it deals with unordered extensions which will mean that we allow
permutations of the given bundles.

To avoid endless repetitions, we fix the following notation for this section:
S is a scheme of finite type over k. For each element i of a finite index set I having L elements,

we assume given a simple quasiparabolic bundle Ei over X ×k S such that Hom(Ei, Ej) vanishes
fibrewise for all i 6= j.

An ordering σ of I is a bijection σ : {1, . . . , L} ∼−→ I. We say that E is an ordered extension
of Eσ(1), . . . , Eσ(L) if there is a chain of subbundles (F lE)l≤L that makes E such an ordered
extension; in fact it is unique if it exists:

Note 1.3.1 Assume that the chain of subbundles

0 = F 0E ⊆ . . . ⊆ FLE = E

makes the quasiparabolic bundle E an ordered extension of Eσ(1), . . . , Eσ(L) for some ordering σ
of I.

i) Hom(E,Eσ(L)) is cohomologically flat, and its direct image sheaf along p : X ×k S → S is
a line bundle L on S. The canonical morphism

E −→ Eσ(L) ⊗OS Ldual

is surjective with kernel FL−1E.

ii) The subbundles F lE are uniquely determined by σ and E.

Proof: i) Locally in S, we choose an isomorphism

φ : E
/
FL−1E

∼−→ Eσ(L).

14



By our assumptions on Hom(Ei
s, E

σ(L)
s ), every morphism from Es to E

σ(L)
s is a scalar multiple of

φs. Hence we can apply corollary 1.1.9.ii; in particular, φ is a local generator of L, and i follows.
ii) According to i, FL−1E is determined by E and Eσ(L). The claim follows by induction. 2

The same quasiparabolic bundle can be an ordered extension for different orderings. For
example, the direct sum Ei⊕Ej is an ordered extension of Ei, Ej as well as an ordered extension
of Ej, Ei. This example is typical in the following sense:

Proposition 1.3.2 Assume that S is just the spectrum of k, and let E be an ordered extension
of Eτ(1), . . . , Eτ(L) for some ordering τ of I.

i) Each nonzero morphism φ from E to an Eτ(l), l ≤ L, is surjective. Its kernel is an ordered
extension of Eτ(1), . . . , Eτ(l−1), Eτ(l+1), . . . , Eτ(L).

ii) If E is also an ordered extension of Eσ(1), . . . , Eσ(L) for another ordering σ 6= τ of I, then
there is a sequence of orderings of I

τ = σ0, σ1, . . . , σR = σ R ≥ 1

such that the following conditions are satisfied for all r < R:

• E is an ordered extension of Eσr(1), . . . , Eσr(L).

• σr(l) and σr+1(l) differ only for two consecutive numbers l = lr, lr + 1.

• If (F lE)l≤L is the chain of subbundles corresponding to σr, then the short exact se-
quence

0 −→ F lrE

F lr−1E
−→ F lr+1E

F lr−1E
−→ F lr+1E

F lrE
−→ 0

splits.

Proof: i) Denote by (F lE)l≤L the chain of subbundles that makes E an ordered extension of
Eτ(1), . . . , Eτ(L). By our assumptions on the Ei, we have

Hom(F l−1E,Eτ(l)) = 0 = Hom(E
/
F lE,Eτ(l)).

Hence φ induces a nonzero morphism from F lE/F l−1E to Eτ(l). This is an isomorphism because
both bundles are simple and isomorphic. So φ is surjective, and it induces a splitting of the short
exact sequence

0 −→ F lE
/
F l−1E −→ E

/
F l−1E −→ E

/
F lE −→ 0.

This means that the kernel of φ modulo F l−1E is isomorphic to E
/
F lE.

ii) We argue by induction on L.
If σ(L) equals τ(L), then the surjections E → Eσ(L) and E → Eτ(L) coming from the two

extension structures have the same kernel E ′ due to note 1.3.1.i. We can apply the induction
hypothesis to E ′, and the proposition follows.

So we may assume that there is an l0 < L with σ(L) = τ(l0). For fixed L, we use descending
induction on l0. As E is an ordered extension with order τ , we have a short exact sequence

0 −→ Eτ(l0) −→ F l0+1E
/
F l0−1E −→ Eτ(l0+1) −→ 0. (1.6)
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But E is also an ordered extension of Eσ(1), . . . , Eσ(L−1), Eσ(L) = Eτ(l0), so there is a nonzero
morphism φ : E → Eτ(l0). As we have seen in the proof of i, φ induces a nonzero morphism

F l0+1E
/
F l0−1E −→ Eτ(l0)

which splits the sequence (1.6). So there is a complement E ′/F l0−1E of Eτ(l0) in F l0+1E/F l0−1E.
The chain of subbundles

0 = F 0E ⊆ . . . ⊆ F l0−1E ⊆ E ′ ⊆ F l0+1E ⊆ . . . ⊆ FLE = E

makes E an ordered extension of

Eτ(1), . . . , Eτ(l0−1), Eτ(l0+1), Eτ(l0) = Eσ(L), Eτ(l0+2), . . . , Eτ(L).

An application of the induction hypothesis completes the descending induction. 2

Definition 1.3.3 Assume that S is reduced. A quasiparabolic bundle E over X ×k S is an
unordered extension of the Ei, i ∈ I, if for each closed point s of S, there is an ordering σ of I
such that the fibre Es is an ordered extension of

Eσ(1)
s , . . . , Eσ(L)

s .

For example, Etriv := ⊕i∈IEi is an unordered extension, the trivial one.
Maybe one should emphasize that the orderings σ do not belong to the datum of an un-

ordered extension. An isomorphism of unordered extensions is nothing but an isomorphism of
quasiparabolic bundles.

Proposition 1.3.4 Let E be a quasiparabolic bundle over X×kS which is an unordered extension
of the Ei, i ∈ I, over each closed point s of S. For each ordering σ of I, there is a unique closed
subscheme Sσ of S with the following universal property:

Any k-morphism of finite type f : T → S factors through Sσ if and only if f ∗E is an ordered
extension of f ∗Eσ(1), . . . , f ∗Eσ(L).

Proof: Note that S is not assumed to be reduced. We proceed by induction on L.
By our assumptions on Hom(Ei

s, E
j
s), we have

dim Hom(Es, E
σ(L)
s ) ≤ 1

for each closed point s of S. Applying corollary 1.1.9.iii, we get a largest closed subscheme Z of
S over which Hom(E,Eσ(L)) is cohomologically flat and its direct image sheaf is a line bundle L
on Z. By proposition 1.3.2.i, the natural morphism

E
∣∣
Z
−→ Eσ(L)

∣∣
Z
⊗OZ Ldual

is surjective, and we can apply the induction hypothesis to its kernel. The resulting closed
subscheme of Z is the Sσ we are looking for. 2

16



Remark 1.3.5 Over non-reduced base schemes, one could try the following definition: E is an
unordered extension of the Ei if it is so over every closed point of S and S is the scheme-theoretic
union of its closed subschemes Sσ. (The latter means by definition that the intersection of the
corresponding ideal sheaves is zero.)

However, this property is not preserved under pullback because scheme-theoretic union does
not commute with pullback in general. (Example: The spectrum S of k[x, y]/(xy) is the union
of two lines S1, S2 in the plane, but the closed subscheme T ⊂ S given by the ideal (x − y) ⊂
k[x, y]/(xy) is not the scheme-theoretic union of S1 ×S T and S2 ×S T .)

That is why we avoid to define unordered extensions over non-reduced bases.

Definition 1.3.6 Let S be reduced. A rigidification of an unordered extension E of the Ei, i ∈ I,
consists of a rigidification (ηlσ)l≤L of the ordered extension E|Sσ for each ordering σ of I such that
the following compatibility condition is satisfied:

Locally in X×kS, there is a morphism η̃ : E → Etriv whose restriction to Sσ is an isomorphism
of rigidified ordered extensions of Eσ(1), . . . , Eσ(L) for all σ.

As one might guess, an isomorphism φ between two rigidified unordered extensions E and E ′

of the Ei is by definition a morphism φ : E → E ′ of quasiparabolic bundles whose restriction to
Sσ is an isomorphism of rigidified ordered extensions of Eσ(1), . . . , Eσ(L) for all σ.

The name ‘rigidification’ is justified by the observation that every automorphism of a rigidified
unordered extension E of the Ei is the identity.

Proposition 1.3.7 Assume that S is reduced. Let
(
ηlσ
)
l,σ

and
(
ωlσ
)
l,σ

be two rigidifications of

the same unordered extension E. Then there is a unique collection (f i)i∈I of invertible functions
f i on S such that

ωlσ = fσ(l)
∣∣
Sσ
· ηlσ

holds for all σ and all l.

Proof: For each σ and each l, we have an automorphism

ωlσ ◦
(
ηlσ
)−1

: Eσ(l)
σ −→ Eσ(l)

σ .

What has to be proved is that there is a unique automorphism φi of Ei for each i ∈ I such that

φσ(l)
∣∣
Sσ

= ωlσ ◦
(
ηlσ
)−1

holds for all σ and all l. As Ei is simple, φi will automatically be the multiplication with an
invertible function f i on S, and the proposition will follow.

The uniqueness of φi is obvious, even over open subschemes of X ×k S, so it suffices to show
the existence of φi locally. But by the compatibility condition, we have locally in X ×k S an
automorphism

ω̃ ◦ (η̃)−1 : Etriv −→ Etriv;

we can take for (φi)i∈I its image under the canonical morphism

End(Etriv) −→
⊕
i∈I

End(Ei)
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that sends each matrix to its entries on the diagonal. 2

The pullback of a rigidified unordered extension of the Ei is again a rigidified unordered
extension, namely of the pullbacks of the Ei. This defines a moduli functor on the category of
reduced schemes of finite type over S which is in fact representable:

Theorem 1.3.8 Assume given the reduced scheme S of finite type over k and the finite set
{Ei : i ∈ I} of simple quasiparabolic bundles over X ×k S such that Hom(Ei, Ej) vanishes
fibrewise for all i 6= j.

i) Locally in S, every unordered extension E of the Ei has a rigidification.

ii) There is a fine moduli scheme

Ext{Ei : i ∈ I} u−→ S

of rigidified unordered extension of the Ei, i ∈ I.

iii) If S is affine, then there is a non-canonical isomorphism of S-schemes

Ext{Ei : i ∈ I} ∼−→
⋃
σ

TotS

( ⊕
l1<l2≤L

R1p∗Hom(Eσ(l2), Eσ(l1))

)

where the right hand side is a union of closed subschemes of

TotS

(⊕
i 6=j

R1p∗Hom(Ei, Ej)

)
.

Proof: We may assume without loss of generality that S is affine, say the spectrum of a finitely
generated k-algebra A. It will be convenient to drop for a while the assumption that S is reduced.

We denote by Ext{Ei : i ∈ I} u−→ S the S-scheme defined by iii. Note that this is the union
of the moduli schemes Ext(Eσ(L), . . . , Eσ(1)) of rigidified ordered extensions as constructed in the
proof of theorem 1.2.9. Furthermore, we can construct a quasiparabolic bundle

Euniv over X ×k Ext{Ei : i ∈ I}

whose restriction to Ext(Eσ(L), . . . , Eσ(1)) is a universal rigidified ordered extension for all order-
ings σ of I; this is done as follows:

For each pair i 6= j ∈ I, we choose an A-module of Čech cochains

H̃1(i, j) ⊆ C1
(
Hom(Ei, Ej)

)
that maps isomorphically onto H1 (Hom(Ei, Ej)). (Like in the ordered case, we cover X ×k S by
two open affine subschemes U ×k S and V ×k S.) We denote by

γuniv ∈
⊕
i 6=j

u∗H̃1(i, j) ⊆ C1

(⊕
i 6=j

Hom(u∗Ei, u∗Ej)

)

18



the unique cochain whose cohomology class is the tautological section in the pullback of the vector
bundle

⊕
i 6=j R1p∗Hom(Ei, Ej) to the subscheme Ext{Ei : i ∈ I} of its own total space. Now we

can define
Euniv := u∗Etriv

∣∣
U×kS

∪id+γuniv u∗Etriv
∣∣
V×kS

.

Note that this construction commutes with affine base change due to cohomological flatness.
(The main point here is that H̃1(i, j)⊗AB also maps isomorphically onto H1 (Hom(f ∗Ei, f ∗Ej))
if f : T −→ S is an affine morphism corresponding to an A-algebra B.) We shall use this freely
to simplify the situation.

A major step towards the proof of the theorem is the following:

Proposition 1.3.9 Assume given an ordering σ of I and a section

c : S −→ Ext{Ei : i ∈ I}

of u. If E := c∗Euniv is an ordered extension of Eσ(1), . . . , Eσ(L), then c factors through the closed
subscheme

Ext(Eσ(L), . . . , Eσ(1)) ⊆ Ext{Ei : i ∈ I}.

Proof: In a first step, let us assume that S is just the spectrum of k. Then c certainly factors
through Ext(Eτ(L), . . . , Eτ(1)) for some ordering τ of I. In particular, E is also an ordered exten-
sion with order τ ; we denote the resulting chain of subbundles by (F lE)l≤L. Due to proposition
1.3.2, we may assume without loss of generality that there is an l0 < L such that

τ(l) =


σ(l) for l 6= l0, l0 + 1

σ(l0 + 1) =: j for l = l0
σ(l0) =: i for l = l0 + 1

holds and the short exact sequence

0 −→ Ej −→ F l0+1E
/
F l0−1E −→ Ei −→ 0

splits. By construction of Euniv, we have

F l0+1E
/
F l0−1E =

(
Ei ⊕ Ej

) ∣∣
U
∪id+γ(i,j)

(
Ei ⊕ Ej

) ∣∣
V

where γ(i, j) is one component of the pullback γ := c∗γuniv. Now the splitting means that γ(i, j)
is a Čech coboundary; hence it is zero by the choice of H̃1(i, j). This precisely means that c also
factors through Ext(Eσ(L), . . . , Eσ(1)).

The second step is to consider general S. By the special case just treated, the restriction of c
to a closed subscheme S ′ defined by a nilpotent ideal n ⊂ A factors through Ext(Eσ(L), . . . , Eσ(1)).
Using induction, we may assume without loss of generality n2 = 0.

There is a rigidification of the ordered extension c∗Euniv that extends the rigidification over
S ′ coming from Ext(Eσ(L), . . . , Eσ(1)). According to the proof of theorem 1.2.9, this means that
there is a cochain

γ ∈
⊕
l1<l2

H̃1(σ(l2), σ(l1))

and an isomorphism of quasiparabolic bundles

c∗Euniv ∼= Etriv
∣∣
U×kS

∪id+γ E
triv
∣∣
V×kS
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which is over S ′ an isomorphism of rigidified ordered extensions. Hence there are bundle auto-
morphisms id + φU of Etriv

∣∣
U×kS

and id + φV of Etriv
∣∣
V×kS

such that

id + c∗γuniv = (id + φU) ◦ (id + γ) ◦ (id + φV )−1

holds. By the uniqueness part of theorem 1.2.9, φU and φV vanish modulo n; this reduces the
equation to

c∗γuniv = γ + δ(φ) + φU ◦ γ − γ ◦ φV
where we consider φ = (φU , φV ) ∈ C0

(
End(Etriv)

)
as a Čech cochain. With respect to the grading

Endd(Etriv) :=
⊕

l2−l1=d

Hom
(
Eσ(l2), Eσ(l1)

)
,

the component in degree d < 0 of our equation is

(c∗γuniv)d = δ(φd) +
d−1∑

d′=1−L

(
φd
′

U ◦ γd−d
′ − γd−d′ ◦ φd′V

)
. (1.7)

We show by induction that (c∗γuniv)d and φd both vanish for d < 0.
Indeed, let us assume that (c∗γuniv)1−L, φ1−L, . . . , (c∗γuniv)d−1, φd−1 vanish already. Then (1.7)

simplifies to
(c∗γuniv)d = δ(φd).

The left hand side of this lies in the direct sum of some H̃1(i, j), so it can only be a coboundary
if it vanishes. As δ is injective here, φd = 0 also follows and the induction is complete.

This vanishing of components of c∗γuniv precisely means that c factors through the closed
subscheme Ext(Eσ(L), . . . , Eσ(1)). 2

As a consequence of proposition 1.3.9, we can construct classifying morphisms for unordered
extensions by gluing the classifying morphisms of ordered extensions as follows:

Corollary 1.3.10 Assume that S is reduced, and let E be an unordered extension of the Ei,
i ∈ I. Locally in S, there is a section

c : S −→ Ext{Ei : i ∈ I}

of u such that c∗Euniv is isomorphic to E as a quasiparabolic bundle.

Proof: By proposition 1.3.4, S is the union of finitely many closed subschemes Sn over which
E is an ordered extension of Eσn(1), . . . , Eσn(L) for some ordering σn of I. (Union always means
scheme-theoretic union here.) We proceed by induction.

Assume that we already have a morphism of S-schemes

cn−1 : S1 ∪ . . . ∪ Sn−1 −→ Ext{Ei : i ∈ I}

and an isomorphism of quasiparabolic bundles

φn−1 : c∗n−1E
univ ∼−→ E

∣∣
S1∪...∪Sn−1

.
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Due to proposition 1.3.9, the restriction of cn−1 to the scheme-theoretic intersection

S ′ := (S1 ∪ . . . ∪ Sn−1)×S Sn

factors through the closed subscheme Ext(Eσn(L), . . . , Eσn(1)). This gives us a rigidification of
the ordered extension E

∣∣
S′

; replacing S by an affine open subscheme, we can extend it to a

rigidification of the ordered extension E
∣∣
Sn

. We get a morphism of S-schemes

c̃ : Sn −→ Ext(Eσn(L), . . . , Eσn(1)) ⊆ Ext{Ei : i ∈ I}

and an isomorphism of quasiparabolic bundles

φ̃ : c̃∗Euniv ∼−→ E
∣∣
Sn

which coincide with cn−1 and φn−1 over S ′. By the lemma given below, we can glue c̃ to cn−1 and
φ̃ to φn−1, obtaining a morphism of S-schemes

cn : S1 ∪ . . . ∪ Sn −→ Ext{Ei : i ∈ I}

and an isomorphism
φn : c∗nE

univ ∼−→ E
∣∣
S1∪...∪Sn

.

That completes the induction. 2

Lemma 1.3.11 Assume that a k-scheme T is the union of two closed subschemes T1 and T2.
Then we can glue morphisms in the following sense:

i) If f1 : T1 → T ′ and f2 : T2 → T ′ are two k-morphisms into another scheme T ′/k whose
restrictions to the scheme-theoretic intersection T1 ×T T2 coincide, then there is a unique
k-morphism f : T → T ′ that restricts to f1 and to f2.

ii) Let E ′ and E ′′ be quasiparabolic bundles over X ×k T . If

ψ1 : E
∣∣
T1
−→ E ′

∣∣
T1

and ψ2 : E
∣∣
T2
−→ E ′

∣∣
T2

are two morphisms that coincide when restricted to T1×TT2, then there is a unique morphism
ψ : E → E ′ that restricts to ψ1 and to ψ2.

Proof: i) We assume without loss of generality that T and T ′ are affine, say the spectra of rings
B and B′. Let bn ⊆ B be the ideal corresponding to Tn. By definition, T = T1 ∪ T2 means
b1 ∩ b2 = (0).

We consider an arbitrary element b′ ∈ B′ and choose elements bn ∈ B such that the residue
class of bn modulo bn is f ∗nb

′. Because f1 and f2 coincide on T1 ×T T2, the difference b1 − b2 is of
the form d1 + d2 with dn ∈ bn. Hence b := b1 − d1 = b2 + d2 ∈ B is a common representative of
the two residue classes f ∗1 b

′ and f ∗2 b
′. In fact it is the only common representative, so f ∗b′ := b

defines the unique morphism f whose restrictions are f1 and f2.
ii) follows from i by considering the two morphisms

X ×k Tn −→ TotX×kT (Hom(E ′, E ′′)) n = 1, 2
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associated to ψ1 and ψ2. 2

Now theorem 1.3.8 follows from corollary 1.3.10. In fact, part i of the theorem is an immediate
consequence, taking into account that the unordered extension Euniv is naturally rigidified.

It remains to check the universality assertion ii of the theorem. By affine base change, it suffices
to show that every rigidified unordered extension E of the Ei is isomorphic to the pullback of
Euniv along a unique section c of u. Now the uniqueness of c follows from the corresponding
ordered assertion and proposition 1.3.9. For the existence, 1.3.10 gives us (locally) a section
c with E ∼= c∗Euniv as quasiparabolic bundles; the two rigidifications differ just by invertible
functions f i according to proposition 1.3.7.

For each i ∈ I, we let a copy of the multiplicative group Gm act linearly on Ei in the obvious
way. By our construction, this induces an action of the torus GI

m on Ext{Ei : i ∈ I}. If we
modify c by an appropriate torus element, we get the required classifying morphism for E. 2

Remark 1.3.12 In particular, Ext{Ei : i ∈ I} −→ S is a Zariski fibration, even in the GI
m-

equivariant sense. More precisely, each point s in S has an open neighborhood U ⊆ S such that
there is a GI

m-equivariant isomorphism of U -schemes

Ext{Ei : i ∈ I}
∣∣
U

∼−→ U ×k
⋃
σ

∏
l1<l2

F (σ(l2), σ(l1))

where F (i, j) is the affine space over k of dimension −χ(Hom(Ei
s, E

j
s)) and the union to the right

is a union of linear subspaces of
∏

i 6=j F (i, j). Here the torus GI
m

/
k acts linearly on F (i, j) in

such a way that (gi)i∈I acts as multiplication with the scalar gj
/
gi.
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Chapter 2

Application to the Boden-Hu conjecture

2.1 Parabolic bundles and their moduli schemes

Like in the previous chapter, we assume given a pointed curve (X,P ) over a field k = k̄ and
consider quasiparabolic bundles whose filtrations at P have a fixed length N . As is well known,
there is a notion of stability for such bundles, but it depends on some extra parameters:

Definition 2.1.1 A weight vector
α = (α1, . . . , αN)

is a sequence of real numbers satisfying

0 ≤ α1 < . . . < αN < 1.

Definition 2.1.2 Let S be a scheme over k. A parabolic bundle E over X×kS is a quasiparabolic
bundle E over X ×k S together with a weight vector α.

By definition, the pullback (resp. a subbundle, resp. a quotient bundle) of a parabolic bundle
E with weight vector α is the pullback (resp. a subbundle, resp. a quotient bundle) of the
underlying quasiparabolic bundle together with the same weight vector α.

Remark 2.1.3 In some texts, e. g. in [BoHu95], it is assumed that all multiplicities are nonzero;
then parabolic subbundles and quotients may have a smaller number of weights. However, this
text will stick to the point of view that the number of weights is fixed, but multiplicities may be
zero. Both views are closely related because there is an obvious way to remove zero multiplicities.

If E and E ′ are parabolic bundles with the same weight vector, then a morphism E −→ E ′ is
nothing but a morphism of the underlying quasiparabolic bundles. These are the only morphisms
of parabolic bundles that will be considered in this text.

We define the scalar product m ·α of a multiplicity vector m = (r, ď,m1, . . . ,mN) and a weight
vector α by the formula

m · α := m1α1 + · · ·+mNαN .

Definition 2.1.4 The degree of a parabolic bundle E with weight vector α is

deg(E) = degα(E) := ď+m · α
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where m = (r, ď,m1, . . . ,mN) is the multiplicity vector of E. If E is nonzero, then the slope of
E is

µ(E) = µα(E) := degα(E)
/
r.

Definition 2.1.5 A nonzero parabolic bundle E over X with weight vector α is called stable
(resp. semistable) if

µα(E ′) < µα(E) (resp. ≤)

holds for all proper subbundles E ′ of E.

Whenever we want to mention α, we refer to these properties as α-stability and α-semistability.
The following Jordan-Hölder type theorem is well known:

Proposition 2.1.6 Each α-semistable parabolic bundle E over X possesses a chain of subbundles
which makes it an ordered extension of α-stable parabolic bundles E1, . . . , EL. The El are unique
up to reordering and isomorphisms.

Proof: e. g. [Ses82, Troisième Partie, Théorème 12] 2

We call the parabolic bundles El above the stable composition factors of E. Two semistable
parabolic bundles over X with the same weight vector α are called S-equivalent if their stable
composition factors coincide (up to reordering and isomorphisms).

If E is a semistable parabolic bundle over X with weight vector α and Ei, i ∈ I, are its stable
composition factors, then the multiplicity vectors of the Ei form an α-partition of the multiplicity
vector of E in the following sense:

Definition 2.1.7 Let α be a weight vector. An α-partition of a multiplicity vector
m = (r, ď,m1, . . . ,mN) is a collection indexed by some finite set I

ξ = {mi : i ∈ I}

consisting of multiplicity vectors

mi = (ri, ďi,mi
1, . . . ,m

i
N)

such that m is the sum of the mi, each ri is nonzero and the equation

ď+m · α
r

=
ďi +mi · α

ri

holds for all i ∈ I. The length |ξ| of ξ is the cardinality of I.

As one might guess, an ordered α-partition of m is a sequence (m1, . . . ,mL) of multiplicity vectors
such that ξ = {m1, . . . ,mL} is an α-partition in the sense just defined. We also call it an ordering
of ξ.

Definition 2.1.8 Let S be a scheme of finite type over k. A parabolic bundle E over X ×k S is
stable (resp. semistable) if the fibre Es is stable (resp. semistable) for every closed point s on S.
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We assume that the genus g of our curve X is at least two and denote by

M(m)α

the moduli scheme of semistable parabolic bundles with multiplicity vector m and weight vector
α. (For the construction of this scheme and its properties, see [MeSe80], [Ses82] or [Bho89].) It
is a normal projective scheme over k endowed with a morphism of functors that assigns to every
semistable parabolic bundle

E over X ×k S

with the given weight and multiplicity vector a so-called classifying morphism

c = c(E) : S −→M(m)α.

This induces a bijection between the k-points ofM(m)α and the S-equivalence classes of semistable
parabolic bundles over X with the given weight and multiplicity vector.

One has an open subscheme
M(m)α−stab ⊆M(m)α

corresponding to stable bundles. It is known to be non-empty (because g ≥ 2) and smooth of
dimension (

g − 1

2

)
r2 − 1

2

(
N∑
n=1

m2
n

)
+ 1

over k. If our multiplicity vector m = (r, ď,m1, . . . ,mN) satisfies

gcd(r, ď,m1, . . . ,mN) = 1,

then the arguments of [New78, Chapter 4, §5] show the existence of a Poincaré bundle

P = P(m)α over X ×k M(m)α−stab.

This stable parabolic bundle is characterized by the following property:
For each α-stable parabolic bundle E over X ×k S with multiplicity vector m, the classifying

morphism
c = c(E) : S −→M(m)α−stab

satisfies
E ⊗OS L ∼= c∗P

for some line bundle L on S, and c(E) is the only k-morphism for which this holds.
The moduli scheme M(m)α can be stratified according to the α-partitions of m that the

parameterized semistable parabolic bundles induce. At least over k = C, we can – under some
additional assumptions – identify the strata with products of lower-dimensional moduli spaces,
cf. [BoHu95, Section 4]. More precisely, one has the following:

Proposition 2.1.9 Let g ≥ 2 and k = C. Let a weight vector α and a multiplicity vector m
be given such that the multiplicities mn are all equal to one and such that the resulting parabolic
degree ď+m · α is zero. For each α-partition

ξ = {mi : i ∈ I}
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of m, the classifying morphism of the direct sum of the Poincaré bundles P(mi)α

c :
∏
i∈I

M(mi)α−stab −→M(m)α

is an isomorphism onto a locally closed subscheme

Σα
ξ ⊆M(m)α.

As each closed point of M(m)α lies on precisely one stratum Σα
ξ by the Jordan-Hölder theorem,

this is in fact a stratification.

2.2 The Boden-Hu desingularisation

We restrict ourselves to weight vectors of a fixed length N lying in the interior of the weight space

◦
W=

◦
W (N, s) := {α ∈ RN : 0 < α1 < . . . < αN < 1 and

N∑
n=1

αn = s}.

Here s will always be a fixed positive integer with s < N . Furthermore, we fix the multiplicity
vector

1 := (N,−s, 1, . . . , 1)

so that the parabolic bundles with these multiplicities and weights will have parabolic degree
zero, and their rank equals the number of weights N .

Remark 2.2.1 The most important consequence of this special multiplicity vector 1 is the fol-
lowing: If a semistable parabolic bundle over X has multiplicity vector 1, then the multiplicity
vectors of its stable composition factors are pairwise distinct; as explained in remark 1.1.3, this
implies that the composition factors are pairwise nonisomorphic.

Let us summarize some results of [BoHu95] on the behaviour of the moduli scheme M(1)α if
the weight vector α is varied.

α is called generic if the only α-partition of 1 is the trivial one ξ = {1}. This means that
α-stability and α-semistability are equivalent for quasiparabolic bundles with multiplicity vector
1, so we have only one stratum

M(1)α = M(1)α−stab

which is both smooth and projective.

We say that a generic β ∈
◦
W is near α ∈

◦
W if for all 2N sequences

ε1, . . . , εN ∈ {0, 1},

there is no integer strictly between

ε1α1 + · · ·+ εNαN and ε1β1 + · · ·+ εNβN .

This means that every β-stable quasiparabolic bundle with multiplicity vector 1 is α-semistable.
In particular this holds for the Poincaré bundle P(1)β, so it has a classifying morphism

φβ : M(1)β −→M(1)α

which is a resolution of singularities, cf. [BoHu95, Remark 4.2].
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Conjecture 2.2.2 (Boden–Hu) Near every weight vector α ∈
◦
W , there is a generic weight

vector β ∈
◦
W such that φβ is a small map.

Recall from [GoMc83, §6.2] that φβ is called small (resp. semismall) if the locus where its fibres
have dimension ≥ d has codimension > 2d (resp. ≥ 2d) in M(m)α for all positive integers d. This
would imply that the intersection homology groups of M(1)α are equal to the ordinary homology
groups of M(1)β; the latter have been computed in [Hol00].

In the next sections, we shall give counterexamples to this conjecture for all ranks N ≥ 9,
and we will prove the conjecture for N ≤ 8. This will rely on information about the fibres of
φβ. In the remainder of this section, we deduce a description of these fibres; the main result is a
corrected version of [BoHu95, Theorem 4.5].

Definition 2.2.3 Assume given α, β ∈
◦
W . An ordered α-partition

(m1, . . . ,mL) of 1 = (N,−s, 1, . . . , 1)

is called β-stable if
(m1 + · · ·+ml) · β < (m1 + · · ·+ml) · α

holds for l = 1, . . . , L− 1.

Lemma 2.2.4 Let ξ be an α-partition of 1 with length |ξ| = L. If β ∈
◦
W is generic near α, then

precisely (L− 1)! of the L! orderings of ξ are β-stable.

Proof: Choose one ordering (m1, . . . ,mL) of ξ, and put

d(l) := (ml + · · ·+mL) · β − (ml + · · ·+mL) · α.

One checks easily that the cyclicly permuted ordering

(ml,ml+1, . . . ,mL,m1, . . . ,ml−1)

is β-stable if and only d(l) is strictly smaller than d(l′) for all l′ 6= l. But no two d(l) are equal
because β is generic. So there is a unique minimum among them, i. e. precisely one of the L
orderings obtained by cyclic permutation is β-stable. 2

Theorem 2.2.5 Let k = C be the field of complex numbers, and let (X,P ) be a pointed smooth
projective curve of genus g ≥ 2 over k. Assume given two weight vectors

α, β ∈
◦
W (N, s)

such that β is generic and near α. We consider the restriction of

φβ : M(1)β −→M(1)α 1 = (N,−s, 1, . . . , 1)

to the inverse image1 of the stratum
Σα
ξ ⊆M(1)α

that corresponds to an α-partition ξ of 1.

1endowed with the reduced subscheme structure
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i) The restriction φβ : φ−1
β (Σα

ξ ) −→ Σα
ξ is a Zariski-locally trivial fibration. Denote its typical

fibre by Fξ.

ii) The fibre Fξ is connected and has (L − 1)! irreducible components if L := |ξ| denotes the
length of ξ. More precisely, there is a canonical bijection that assigns to every β-stable
ordering of ξ (

m(1), . . . ,m(L)
)

an irreducible component F(m(1),...,m(L)) of Fξ.

iii) Each component F(m(1),...,m(L)) of the fibre is a smooth projective variety. It is rational of
dimension

1

2

∑
l1<l2

(
(2g − 1)r(l1) · r(l2) + ∆

(
m(l1),m(l2)

))
+ 1− L

where r(l) is the first entry (the ‘rank’) of the multiplicity vector m(l).

Proof: We work over the base scheme

Σα
ξ =

∏
i∈I

M(mi)α−stab

and denote by Pα,i the quasiparabolic bundle over X×kΣα
ξ obtained by pulling back the Poincaré

bundle P(mi)α over X ×k M(mi)α−stab. We check that these bundles satisfy the hypothesis of
theorem 1.3.8.

In fact, they are simple because they are α-stable. For i 6= j ∈ I, the fibres of Pα,i and of Pα,j
over each point of Σα

ξ are α-stable of the same slope zero, and they are not isomorphic because
their multiplicity vectors mi and mj are different. It follows that Hom(Pα,i,Pα,j) does indeed
vanish fibrewise.

So we can apply theorem 1.3.8 and get a scheme Ext{Pα,i : i ∈ I} over Σα
ξ classifying rigidified

unordered extensions of the Pα,i. We denote by

Ext{Pα,i : i ∈ I}β−stab

the open subscheme where the universal extension Euniv is β-stable. We get a classifying morphism
from this open subscheme to M(1)β. In fact, each point is mapped to the inverse image of Σα

ξ ; as
the Ext-scheme is reduced, the classifying morphism factors through this inverse image, leading
to a commutative diagram

Ext{Pα,i : i ∈ I}β−stab c //

u

((PPPPPPPPPPPPPP
φ−1
β (Σα

ξ )

φβ{{ww
ww

ww
ww

w

Σα
ξ .

The torus GI
m acts on Ext{...}β−stab by changing the rigidification. The diagonal Gm ⊆ GI

m

acts trivially, so we get an action of the quotient torus

T := GI
m

/
Gm.

28



Lemma 2.2.6 c : Ext{Pα,i : i ∈ I}β−stab −→ φ−1
β (Σα

ξ ) is a (Zariski-locally trivial) principal
T -bundle.

Proof: The main reason is that both schemes parameterize the same bundles, but one of them
with and the other without a rigidification. More precisely:

The restriction of P(1)β to φ−1
β (Σα

ξ ) is an unordered extension of the quasiparabolic bundles

φ∗βPα,i. By part i of theorem 1.3.8, we can locally rigidify it. Choosing a rigidification over an
open subscheme

U ⊆ φ−1
β (Σα

ξ )

determines a section of c over U ; using the T -action, we get an equivariant morphism

T ×k U −→ c−1(U).

We want to show that this is an isomorphism. It suffices to check that it is an isomorphism of
functors on the category of reduced schemes S of finite type over k.

So assume given a k-morphism
f : S −→ c−1(U).

Then f ∗Euniv and (f ◦ c)∗P(1)β are locally isomorphic as quasiparabolic bundles. By proposition
1.3.7, this implies that f can locally be lifted to T ×k U .

The local isomorphisms between f ∗Euniv and (f◦c)∗P(1)β are unique up to invertible functions
on S because both bundles are β-stable and hence simple. Using the uniqueness part of proposition
1.3.7, it follows that the local lifts of f to T ×k U are locally unique. Hence they can be glued
together to a unique lift of f over all of c−1(U).

This shows that c is indeed a trivial principal T -bundle over U . 2

The next step is to describe the β-stable locus in Ext{Pα,i : i ∈ I}. It suffices to find its
k-rational points. These points correspond to unordered extensions E of quasiparabolic bundles
Ei, i ∈ I, over X such that each Ei is α-stable of degree zero with multiplicity vector mi. Now
choose an ordering σ of I such that E is an ordered extension of Eσ(1), . . . , Eσ(L), and let

0 = F 0E ⊆ F 1E ⊆ . . . ⊆ FLE = E

be the resulting chain of subbundles. If E is β-stable, then we get

degβ(F lE) < degα(F lE) = 0

for l = 1, . . . , L − 1; this precisely means that σ, considered as an ordering of the α-partition
ξ = {mi : i ∈ I} of our multiplicity vector 1, is β-stable. The converse is also true:

Note 2.2.7 Consider every ordering σ of I for which E is an ordered extension of Eσ(1), . . . , Eσ(L)

as an ordering of ξ. If they are all β-stable, then E is also β-stable.

Proof: Assume the contrary, i. e. that there is a quasiparabolic subbundle

0 6= E ′ ( E with µβ(E ′) > µβ(E) = 0.

Because β is near α in the sense defined above, this implies

µα(E ′) ≥ µα(E),
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but E is α-semistable, so equality follows. By the Jordan-Hölder theorem 2.1.6, E ′ is an ordered
extension of some of the Ei’s, and E/E ′ is an ordered extension of the remaining Ei’s in some
ordering. This gives us a bijection σ for which E is an ordered extension of Eσ(1), . . . , Eσ(L) and
such that the ordering σ of ξ is not β-stable. 2

Corollary 2.2.8

Ext{Pα,i : i ∈ I}β−stab = Ext{Pα,i : i ∈ I} \
⋃
σ

Ext(Pα,σ(L), . . . ,Pα,σ(1))

where the union is taken over all orderings σ of I which are not β-stable as orderings of ξ = {mi :
i ∈ I}.

Corollary 2.2.9 As a scheme with T -action, Ext{Pα,i : i ∈ I}β−stab is a Zariski-locally trivial
fibration over Σα

ξ . Call its typical fibre F̃ξ; it can be described as follows:
For i 6= j ∈ I, let F (i, j) be the affine space of dimension

−χ
(
Hom(Pα,i,Pα,j)

)
over k, endowed with the T -action described in remark 1.3.12. To each ordering σ of I, we
associate the linear subspace

Cσ :=
∏
l1<l2

F (σ(l2), σ(l1)) ⊆
∏
i 6=j

F (i, j)

(which, by the way, is the typical fibre of Ext
(
Pα,σ(L), . . . ,Pα,σ(L)

)
according to theorem 1.2.9 and

the proof of theorem 1.3.8). Then F̃ξ is the reduced locally closed T -invariant subscheme⋃
σ

Cσ \
⋃

σ not β-stable

Cσ ⊆
∏
i 6=j

F (i, j).

We can form the quotient of this typical fibre by T . More precisely, there is a k-scheme Fξ
and a morphism

F̃ξ −→ Fξ

which is a Zariski-locally trivial principal T -bundle. To see this, choose a k-rational point on Σα
ξ

and define Fξ to be the fibre of φβ over this point. By lemma 2.2.6, F̃ξ is indeed a Zariski-locally
trivial T -bundle over Fξ.

Now let U be an open subscheme of Σα
ξ such that c−1(U) is isomorphic to F̃ξ × U . Then

the latter is a Zariski-locally trivial T -bundle over φ−1
β (U) by lemma 2.2.6 again; because such

quotients are unique, this implies
φ−1
β (U) ∼= Fξ × U

and proves part i of the theorem.
To verify the remaining assertions ii and iii of the theorem, we study the irreducible compo-

nents of F̃ξ. The latter is the union of its closed subschemes

F̃(mσ(1),...,mσ(L)) := F̃ξ ∩ Cσ.
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If σ is not β-stable as an ordering of ξ, then this subscheme is empty. Otherwise, it is not
contained in Cτ for τ 6= σ because the dimension of F (i, j) is always positive. (To see the latter,
one can use proposition 1.1.6.i to deduce the estimate

degHom(E,E ′) ≤ rk(E) · degα(E ′)− rk(E ′) · degα(E)

for arbitrary quasiparabolic bundles E,E ′; together with the Riemann-Roch theorem, this leads
to

−χ
(
Hom(Pα,i,Pα,j)

)
≥ (g − 1)ri · rj > 0,

as required.) In particular, F̃(mσ(1),...,mσ(L)) is non-empty for β-stable σ; as it is open in the affine
space Cσ, it is irreducible.

Hence the irreducible components of F̃ξ are precisely those F̃(mσ(1),...,mσ(L)) for which σ is β-
stable; part ii of the theorem follows. (All fibres of φβ are connected anyway by Zariski’s main
theorem.)

Now let σ be a β-stable ordering of ξ and put m(l) := mσ(l). The component F(m(1),...,m(L)) of

the typical fibre Fξ is projective because it is closed in the projective scheme M(1)β; it is smooth
of the claimed dimension because F̃(m(1),...,m(L)) is open in the affine space Cσ whose dimension

1

2

∑
l1<l2

(
(2g − 1)r(l1) · r(l2) + ∆

(
m(l1),m(l2)

))
has been computed in remark 1.2.12. It remains to check that F(m(1),...,m(L)) is rational.

The open T -invariant subscheme

L−1∏
l=1

[
F (σ(l + 1), σ(l)) \ {0}

]
×

∏
l2−l1≥2

F (σ(l2), σ(l1)) ⊆ Cσ

doesn’t intersect the other Cτ ’s, so its quotient by T is an open subscheme of F(m(1),...,m(L)). But
this quotient by T is a Zariski-locally trivial fibration over the product of projective spaces

L−1∏
l=1

PF (σ(l + 1), σ(l))

with typical fibre the affine space ∏
l2−l1≥2

F (σ(l2), σ(l1)).

Hence it is rational, and F(m(1),...,m(L)) is rational, too. 2

Remarks 2.2.10 i) If M(1)α consists of only two strata, then theorem 2.2.5 is contained in
[BoHu95, Theorem 3.1].

ii) The theorem 2.2.5 just proved contradicts [BoHu95, Theorem 4.5]; the latter states that
the fibres of φβ are always irreducible. What’s wrong with the argument given by Boden and
Hu?

On page 554, line 8, they claim that the number of γ-stable composition factors of a γ-
semistable parabolic bundle E cannot exceed the number of its β-stable composition factors by
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more than one if β covers γ in the sense they define on page 553. Here is a counterexample to
that claim:

Let E be a generic ordered extension of three bundles E1, E2, E3 that are γ-stable of degree
zero. Let β cover γ in such a way that

degβ(E1) < degβ(E2) = 0 < degβ(E3)

holds. Then E is β-stable (because E2 is neither a subbundle nor a quotient of E, just a subquo-
tient), but it has three γ-stable composition factors.

2.3 Partitions of length two and three

We still fix the number N of weights and a positive integer s < N , the sum of the weights. For
weight vectors

α, β ∈
◦
W (N, s)

such that β is generic and near α, we consider the Boden-Hu desingularisation

φβ : M(1)β −→M(1)α

of the projective moduli scheme M(1)α of α-semistable quasiparabolic bundles with multiplicity
vector

1 = (N,−s, 1, . . . , 1).

For each α-partition ξ of 1, theorem 2.2.5 describes the typical fibre Fξ of φβ over the corre-
sponding stratum

Σα
ξ ⊂M(1)α;

in particular we can compute the ‘deviation of φβ from being small’

devβ(ξ) := 2 dimFξ − codim Σα
ξ .

Using the dimension formula in theorem 2.2.5, the result is

devβ(ξ) = 1− L+ max
∑

l1<l2≤L

∆
(
m(l1),m(l2)

)
where the maximum is taken over all β-stable orderings (m1, . . . ,mL) of ξ.

We say that β is small over ξ if devβ(ξ) is negative. Clearly φβ is a small map if and only if
β is small over each α-partition ξ of the multiplicity vector 1.

Note that the latter property involves only the weights α and β, but not the curve X any
more. (Even its genus g has canceled out in the computation of devβ(ξ)). This section deals with
smallness over partitions ξ of length two and three.

Proposition 2.3.1 Near each weight vector α ∈
◦
W (N, s), there is a generic weight vector

β ∈
◦
W (N, s) which is small over all length two α-partitions ξ of the multiplicity vector 1 =

(N,−s, 1, . . . , 1).
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Proof: We choose a real number ε > 0 and define γ ∈ RN by

γn := αn + ε (2Nαn − 2s+N − 2n+ 1) for n = 1, . . . , N.

Consider a length two α-partition ξ of 1. In other words, we have ξ = {m,1 − m} for a
multiplicity vector

m = (r, ď,m1, . . . ,mN)

for which m · α = m1α1 + · · ·+mNαN is equal to −ď. Recall that r is the sum of the mn. Using
all this, we can compute the value of our alternating bilinear form ∆ directly from its definition
1.1.7; we get

∆(m,1−m) = ∆(m,1)

= 2r · (−s) +
N∑
n=1

mn · (N − n)− 2N · ď−
N∑
n=1

mn · (n− 1)

=
∑
n

mn · (2Nαn − 2s+N − 2n+ 1) .

This means that
m · γ −m · α = ε∆(m,1−m)

holds for all these m.
In particular, this computation works for m = 1 and proves γ1 + . . .+ γN = s. Hence

γ ∈
◦
W (N, s)

if ε was chosen sufficiently small. Let β be a generic weight vector near γ. Then β is also near α
if ε is small enough. We check that β is small over all length two α-partitions ξ = {m,1−m} of
1.

If ∆(m,1 −m) vanishes, then every generic weight vector near α is small over ξ. If not, we
can assume without loss of generality

∆(m,1−m) < 0

(replacing m by 1−m if necessary). By the computation above, this implies

m · γ < m · α.

As β is near γ, the same inequality holds for β. So the unique β-stable ordering of ξ is (m,1−m),
and β is indeed small over ξ. 2

Now let ξ be a length three α-partition of 1. Choose an ordering (m,m′,m′′) of ξ and denote
by

∆1 ≤ ∆2 ≤ ∆3

the three integers
∆(m,m′), ∆(m′,m′′), ∆(m′′,m),

ordered by their magnitude. ∆1, ∆2 and ∆3 do depend mildly on the chosen ordering of ξ: If
we permute m,m′,m′′ cyclicly, they remain unchanged. But if we apply one of the three odd
permutations to m,m′,m′′, then ∆ν gets replaced by −∆4−ν . In particular, the expression

I(ξ) := ∆1 −∆3 + |∆2|

does not depend on the ordering of ξ, so it is an invariant of ξ.
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Proposition 2.3.2 Let ξ be a length three α-partition of 1. Then

devβ(ξ) ≥ I(ξ)− 2

holds for all generic β near α. If β is small over the three length two α-partitions (m,1 − m)
with m ∈ ξ, then we have equality:

devβ(ξ) = I(ξ)− 2.

Proof: If (m,m′,m′′) is an ordering of ξ, then the three quantities

m · β −m · α, m′ · β −m′ · α, m′′ · β −m′′ · α

are nonzero (as β is generic) and have sum zero (since 1 · β = 1 · α). Choosing the ordering
appropriately, we may assume without loss of generality

m · β < m · α and m′′ · β > m′′ · α.

We distinguish two cases.
If m′ · β < m′ · α, then the two β-stable orderings of ξ are

(m,m′,m′′) and (m′,m,m′′),

and the corresponding deviation is

devβ(ξ) = ∆(m′,m′′)−∆(m′′,m) + |∆(m,m′)| − 2.

Now this expression will not increase if we permute ∆(m,m′), ∆(m′,m′′) and ∆(m′′,m) in such a
way that the largest one gets the negative sign and the smallest one gets the positive sign. Hence
it is at least I(ξ)− 2.

For the equality assertion, observe that the unique β-stable orderings of the three length two
α-partitions induced by ξ are

(m,m′ +m′′), (m′,m+m′′), (m+m′,m′′).

If β is small over these three, the corresponding deviations are negative; this precisely means

∆(m′,m′′) ≤ ∆(m,m′) ≤ ∆(m′′,m).

This identifies the ∆ν and proves devβ(ξ) = I(ξ)− 2.
The remaining second case m′ · β > m′ · α is treated analogously. We get

devβ(ξ) = ∆(m,m′)−∆(m′′,m) + |∆(m′,m′′)| − 2 ≥ I(ξ)− 2.

Stability of β over the three length two α-partitions is equivalent to

∆(m,m′) ≤ ∆(m′,m′′) ≤ ∆(m′′,m),

so we get the required equality in this case. 2
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2.4 Counterexamples for rank nine and beyond

Consider the rank N ≥ 9, and choose a positive integer t ≤ N/9. We construct a weight vector

α ∈
◦
W (N, 3t+ 1)

as follows: Choose a positive real number ε < 1/6, and let the first N − 6t− 1 weights

0 < α1 < . . . < αN−6t−1 < 1/6

have sum ε. Assume that the next 3t weights satisfy

1/6 < αN−6t < . . . < αN−3t−1 < 1/2

and have average 1/3, i. e. sum t. Similarly, let the next 3t weights satisfy

1/2 < αN−3t < . . . < αN−1 < 5/6

and have average 2/3, i. e. sum 2t. Finally, put

αN := 1− ε.

Proposition 2.4.1 Near the weight vector α just constructed, there is no generic weight vector
β such that the Boden-Hu desingularisation

φβ : M(1)β −→M(1)α

is a semismall map.

Proof: By choice of the weights, the three multiplicity vectors

m = ( N − 6t , −1 , 1, . . . , 1 , 0, . . . , 0 , 0, . . . , 0 , 1 )
m′ = ( 3t , −t , 0, . . . , 0 , 1, . . . , 1 , 0, . . . , 0 , 0 )
m′′ = ( 3t , −2t , 0, . . . , 0︸ ︷︷ ︸

N−6t−1

, 0, . . . , 0︸ ︷︷ ︸
3t

, 1, . . . , 1︸ ︷︷ ︸
3t

, 0 )

form an α-partition ξ = {m,m′,m′′} of 1. Directly from the definition 1.1.7 of ∆, we get

∆(m′,m′′) = 3t2 and ∆(m,m′) = ∆(m′′,m) = t(N − 6t) ≥ 3t2,

so proposition 2.3.2 gives us
devβ(ξ) ≥ I(ξ)− 2 = 3t2 − 2

for each generic β near α. This is positive, so φβ cannot be semismall. 2
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2.5 Proof of the conjecture for ranks up to eight

Considering small ranks, it is useful to observe the following:

Note 2.5.1 Assume given a weight vector α ∈
◦
W (N, s) and two distinct multiplicity vectors

m = (r, ď,m1, . . . ,mN) and m′ = (r′, ď′, . . . ,m′N)

that occur in the same α-partition ξ of the multiplicity vector 1 = (N,−s, 1, . . . , 1).

i) ∆(m,m′) is congruent to r · r′ modulo 2.

ii) If r = r′ = 2, then ∆(m,m′) = 0.

Proof: i) From its very definition 1.1.7, we get

∆(m,m′) ≡
∑
n6=n′

mnm
′
n′ = r · r′ −

∑
n

mnm
′
n

modulo two. But mnm
′
n is always zero as we have mn + m′n ≤ 1 because m and m′ occur in the

same partition of 1.
ii) Our assumptions on m imply that it has the form

m = (2,−1, 0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0)

with mn = 1 for two indices n = n1, n2, say n1 < n2, such that

αn1 + αn2 = 1

holds. The same applies to m′; if we denote by n′1 < n′2 the two values of n which satisfy m′n > 0,
then we also have

αn′1 + αn′2 = 1.

As the αn are numbered by their size, this implies

n1 < n′1 < n′2 < n2 or n′1 < n1 < n2 < n′2;

in both cases, ∆(m,m′) = 2rď′ − 2r′ď = 0 follows. 2

The main result of this section is the following:

Theorem 2.5.2 If N ≤ 8 and α ∈
◦
W (N, s), then there is a generic weight vector β near α

which is small over all α-partitions ξ of the weight vector 1 = (N,−s, 1, . . . , 1). Consequently,
the Boden-Hu conjecture holds for ranks N ≤ 8.

Proof: By proposition 2.3.1, we can find a generic β near α which is small over all ξ of length
two. We claim that such a weight vector β is automatically small over all ξ.

If a multiplicity vector m = (r, . . .) occurs in an α-partition ξ of 1, then its rank r is at least
two (since no weight is an integer). Hence there are no partitions ξ of length greater than four.

If |ξ| = 4, then all its four multiplicity vectors must have rank two, so we can apply note
2.5.1.ii and get devβ(ξ) = −3 for all generic β near α, i. e. all possible β are small over ξ.

It remains to treat the case |ξ| = 3. Using proposition 2.3.2, the following estimate implies
that β is small over these ξ, too. 2
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Proposition 2.5.3 If N ≤ 8 and α ∈
◦
W (N, s), then I(ξ) < 2 for all length three α-partitions

ξ = {m,m′,m′′} of 1.

Proof: Let ∆1 ≤ ∆2 ≤ ∆3 be the three integers ∆(m,m′), ∆(m′,m′′) and ∆(m′′,m), ordered
by their size. Recall that I(ξ) = ∆1 −∆3 + |∆2| by definition. Applying an odd permutation to
m,m′,m′′ if necessary, we may assume without loss of generality ∆2 ≥ 0; this implies

I(ξ) = ∆1 −∆3 + ∆2 ≤ ∆1 ≤ ∆2 ≤ ∆3.

We consider the rank entries r, r′ and r′′ of our three multiplicity vectors, defined by m =
(r, . . .), m′ = (r′, . . .) and m′′ = (r′′, . . .). If at least two of them are equal to two, we can apply
note 2.5.1.ii and get

I(ξ) ≤ 0.

The only remaining case is that the ranks r, r′ and r′′ are 2, 3 and 3. Permuting m, m′ and
m′′ cyclicly if necessary, we may assume without loss of generality r = 2 and r′ = r′′ = 3.

By note 2.5.1.i, I(ξ) is odd, so it suffices to prove I(ξ) < 3. Let us assume the contrary. Then
we have

∆1,∆2,∆3 ≥ 3.

But again by note 2.5.1.i, two of these three integers are even, hence their sum is at least eleven.
This contradicts the following lemma, so the proposition follows. 2

Lemma 2.5.4 Assume that the multiplicity vectors

m = (2, −1, m1 , . . . , m8)

m′ = (3, ď′, m′1 , . . . , m′8)

m′′ = (3, ď′′, m′′1 , . . . , m′′8)

form an α-partition ξ = {m,m′,m′′} of 1 = (8,−s, 1, . . . , 1). Then

∆(m,m′) + ∆(m′,m′′) + ∆(m′′,m) < 11.

Proof: In the definition 1.1.7 of ∆, there are summands involving the rank and degree components
of the two multiplicity vectors and summands depending on the multiplicities themselves. Let us
denote by ∆deg the sum of the former and by ∆mul the sum of the latter. Then

∆ = ∆deg + ∆mul

as bilinear forms.
With the rank and degree entries given, we can compute ∆deg; the result is

∆deg(m,m′) + ∆deg(m′,m′′) + ∆deg(m′′,m) = 2ď′′ − 2ď′.

Now the sum of ď′ and three weights is zero, and the same applies to ď′′. Hence both are equal
to −1 or −2, and we get

∆deg(m,m′) + ∆deg(m′,m′′) + ∆deg(m′′,m) ≤ 2 (2.1)

with equality only for ď′ = −2 and ď′′ = −1.
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The remaining summands are

∆mul(m,m
′) + ∆mul(m

′,m′′) + ∆mul(m
′′,m) =

∑
n<n′

mnm
′
n′ −

∑
n′<n

mnm
′
n′ +

+
∑
n′<n′′

m′n′m
′′
n′′ −

∑
n′′<n′

m′n′m
′′
n′′ +

∑
n′′<n

m′′n′′mn −
∑
n<n′′

m′′n′′mn.

Here we have precisely 2 · 3 + 3 · 3 + 3 · 2 = 21 nonzero summands; they are all equal to ±1. We
count the summands equal to −1.

There are 2 · 3 · 3 = 18 triples of indices (n, n′, n′′) with mn = m′n′ = m′′n′′ = 1. As n < n′ <
n′′ < n is impossible, at least one of the three summands

mnm
′
n′ , m′n′m

′′
n′′ and m′′n′′mn (2.2)

occurs with a negative sign. Each negative summand determines a pair of indices which can be
extended to one of our 18 triples in at most three ways. Hence the number of negative summands
is at least 18/3 = 6, the number of positive summands is at most 21− 6 = 15, and we get

∆mul(m,m
′) + ∆mul(m

′,m′′) + ∆mul(m
′′,m) ≤ 15− 6 = 9.

If this is a strict inequality, then we are done. So let us assume that we have equality here.
Then only one of the three summands in (2.2) can have a negative sign, and it must determine
a pair of indices which can be extended to one of our 18 triples in exactly three ways. Hence
m′n′m

′′
n′′ can never have a negative sign, i. e. n′ < n′′ for all indices n′, n′′ with m′n′ = m′′n′′ = 1.

But n′ < n′′ implies αn′ < αn′′ , so we get

−ď′ = m′ · α < m′′ · α = −ď′′.

Hence (2.1) is a strict inequality in this case, and the lemma follows. 2
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Chapter 3

On Arakelov bundles over arithmetic
curves

This chapter is completely independent of the previous ones. We introduce new notation, aban-
doning the special conventions of the previous sections.

3.1 Notation

Let K be a number field of degree d over Q and with ring of integers OK . Let X = Spec(OK)∪X∞
be the set of places of K; this might be called an ‘arithmetic curve’ in the sense of Arakelov
geometry. X∞ consists of r1 real and r2 complex places with r1 + 2r2 = d.

For every place v ∈ X, we endow the corresponding completion Kv of K with the map
| . |v : Kv → R≥0 defined by µ(a · S) = |a|v · µ(S) for a Haar measure µ on Kv. This is the
normalized valuation if v is finite, the usual absolute value if v is real and its square if v is
complex. The well known product formula

∏
v∈X |a|v = 1 holds for every 0 6= a ∈ K.

Let Ov be the set of those a ∈ Kv which satisfy |a|v ≤ 1; this is the ring of integers in Kv for
finite v and the unit disc for infinite v. OA :=

∏
v∈X Ov is a compact neighborhood of 0 in the

adele ring A.
We fix a canonical Haar measure λv on Kv as follows:

• If v is finite, we normalize by λv(Ov) = 1.

• If v is real, we take for λv the usual Lebesgue measure on R.

• If v is complex, we let λv come from the real volume form dz ∧ dz̄ on C. In other words,
we take twice the usual Lebesgue measure.

This gives us a canonical Haar measure λ :=
∏

v∈X λv on A. We have λ(A/K) = ∆1/2 where
∆ = ∆(K) denotes (the absolute value of) the discriminant. More details on this measure can
be found in section 2.1 of [Wei82].
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3.2 A mean value formula

Proposition 3.2.1 Let 1 ≤ l < n, and let Φ be an integrable function on the space Matn×l(A)
of n× l adele matrices. Then∫

Sln(A)/Sln(K)

dτ(A)
∑

M∈Matn×l(K)

rk(M)=l

Φ(A ·M) = ∆−nl/2
∫

Matn×l(A)

Φ dλn×l

where the measure τ is induced by the Tamagawa measure on Sln(A) along the local homeomor-
phism Sln(A)→ Sln(A)/Sln(K).

Proof: With real numbers and integers instead of adeles and elements of K, a similar result
has already been stated by Siegel in [Sie45], and an elementary proof is given in [MaRo58]. In
the adelic context, the case l = 1 is done in section 3.4 of [Wei82], and the general case can be
deduced along the same lines from earlier sections of this book. For the convenience of the reader,
we recall the main arguments.

First of all, note that the sum on the left hand side is well-defined: If A ∈ Sln(A) is replaced
by another representative of its class modulo Sln(K), then the summands are just permuted. The
proposition implicitly claims that this series is absolutely convergent outside a set of measure
zero in Sln(A)/Sln(K) and that the sum is integrable. For all this, we may assume without loss
of generality that Φ is nonnegative.

Let G be the algebraic group Sln over the ground field K, and denote by τG the Tamagawa
measure on G(A) or any quotient by a discrete subgroup. G acts on the affine space Matn×l by
left multiplication, and we denote by

H =


1 0

. . . ∗
0 1

0 Sln−l

 ⊆ G

the stabilizer of the rational point

E =


1 0

. . .

0 1
0

 ∈ Matn×l(K).

With this notation, the left hand side of the claim becomes∫
G(A)/G(K)

dτG(A)
∑

B∈G(K)/H(K)

Φ(AB · E) =

∫
G(A)/H(K)

Φ(A · E) dτG(A).

Observe that H is the semi-direct product of Sln−l and Matl×(n−l). It follows that H(A) is
a unimodular group having a canonical Haar measure, the Tamagawa measure τH , because the
product of the local measures defined by an algebraic volume form converges by Theorem 2.4.4
of [Wei82]. This theorem also gives us the Tamagawa number of H:∫

H(A)/H(K)

dτH = 1.
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Now consider the quotient of G by H. Denote by

Matrk=l
n×l ⊆ Matn×l

the open subvariety whose K ′-valued points for extension fields K ′ ⊇ K are just the matrices of
rank l. Then

G/H = Matrk=l
n×l

and, more precisely, G
·E−→ Matrk=l

n×l is a principal bundle with structure group H: one can
cover Matrk=l

n×l by
(
n
l

)
open subvarieties isomorphic to Gll ×Mat(n−l)×l and trivialize the bundle

explicitly over each of these. Hence we can apply Theorems 2.4.2 and 2.4.3 of [Wei82] and obtain
the following:

• Matrk=l
n×l (A) = G(A)/H(A)

• We have a canonical invariant measure, the Tamagawa measure τG/H , on Matrk=l
n×l (A) (be-

cause the product of the local measures defined by an algebraic volume form on Matrk=l
n×l

converges).

• τG = τG/H · τH which means by definition that∫
G(A)

Ψ dτG =

∫
Matrk=l

n×l (A)

dτG/H(A · E)

∫
H(A)

Ψ(AB) dτH(B)

holds for every nonnegative measurable function Ψ on G(A). (The right hand side is to be
interpreted as the integral of the unique function on Matrk=l

n×l (A) whose value at A · E is
equal to

∫
H(A)

Ψ(AB) dτH(B) for every A ∈ G(A).)

In the last equation, Lemma 2.4.1 of [Wei82] enables us to divide out the discrete subgroup H(K).
Hence ∫

G(A)/H(K)

Ψ dτG =

∫
Matrk=l

n×l (A)

dτG/H(A · E)

∫
H(A)/H(K)

Ψ(AB) dτH(B)

if Ψ is H(K)-invariant, and in particular∫
G(A)/H(K)

Φ(A · E) dτG(A) =

∫
Matrk=l

n×l (A)

Φ dτG/H .

But by Lemma 3.4.1 of [Wei82], the complement of Matrk=l
n×l (A) in Matn×l(A) has measure zero,

and τG/H is just the restriction of the Tamagawa measure on Matn×l(A). The latter is by definition
λn×l divided by the constant λ(A/K)nl, so we obtain∫

Matrk=l
n×l (A)

Φ dτG/H = ∆−nl/2
∫

Matn×l(A)

Φ dλn×l

as required. 2
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3.3 Arakelov vector bundles

Definition 3.3.1 An Arakelov (vector) bundle E over our ‘arithmetic curve’ X = Spec(OK)∪X∞
is a finitely generated projective OK-module EOK endowed with

• a euclidean scalar product 〈 , 〉E,v on the real vector space EKv for every real place v ∈ X∞
and

• an hermitian scalar product 〈 , 〉E,v on the complex vector space EKv for every complex
place v ∈ X∞

where EA := EOK ⊗ A for every OK-algebra A.

We say that E ′ is a subbundle of E and write E ′ ⊆ E if E ′OK is a direct summand in EOK and
the scalar product on E ′Kv is the restriction of the one on EKv for every infinite place v. Hence
every sub-vector space of EK is the generic fibre of one and only one subbundle of E .

From the data belonging to an Arakelov bundle E , we can define a map

‖ . ‖E,v : EKv −→ R≥0

for every place v ∈ X:

• If v is finite, let ‖e‖E,v be the minimum of the valuations |a|v of those elements a ∈ Kv for
which e lies in the subset a · EOv of EKv . This is the nonarchimedean norm corresponding
to EOv .

• If v is real, we put ‖e‖E,v :=
√
〈e, e〉v, so we just take the norm coming from the given scalar

product.

• If v is complex, we put ‖e‖E,v := 〈e, e〉v which is the square of the norm coming from our
hermitian scalar product.

Recall that this is used in the definition of the Arakelov degree: If L is an Arakelov line bundle
and 0 6= s ∈ LK a nonzero generic section, then

deg(L) := − log
∏
v∈X

‖s‖L,v

and the degree of an Arakelov vector bundle E is by definition the degree of the Arakelov line
bundle det(E). µ(E) := deg(E)/rk(E) is called the slope of E . One can form the tensor product
of two Arakelov bundles in a natural manner, and it has the property µ(E ⊗ F) = µ(E) + µ(F).

For each finite place v, we have

EOv = {e ∈ EKv : ‖e‖E,v ≤ 1}.

Slightly abusing notation, we take this equation as a definition of EOv for infinite places v. Then

EOA :=
∏
v∈X

EOv

is a compact neighborhood of 0 in the topological abelian group EA.
Again carrying over from section 3.1, we get a canonical Haar measure on EA

λE :=
∏
v∈X

λE,v

whose local components are defined as follows:
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• If v ∈ X is a finite place, we normalize the Haar measure λE,v on EKv by λE,v(EOv) = 1.

• If v ∈ X∞ is an infinite place, we choose an isometry of EKv onto Kn
v with the standard

scalar product and let λE,v be the pullback of the product measure λnv from section 3.1.

Lemma 3.3.2 Let E be an Arakelov vector bundle of rank n over X.

i) The measure of the compact subset EOA ⊆ EA depends only on the rank of E. More precisely,
λE(EOA) = V (n) with

V (n) = 2nr2πnd/2(n/2)!−r1n!−r2

= (2πe/n)nd/2 ·O
(
n−(r1+r2)/2

)
for n→∞.

ii) If φA : An ∼−→ EA comes from a linear isomorphism φ : Kn ∼−→ EK, then

λE = exp(− deg(E)) · φA,∗λ
n and in particular

λE(EA/EK) = exp(− deg(E)) ·∆n/2.

Proof: For i, note that λE,v(EOv) = 1 by definition if v is finite. If v is real,

λE,v(EOv) = VR(n) =
πn/2

(n/2)!

is the volume VR(n) of the unit ball in Rn, and if v is complex,

λE,v(EOv) = 2n · VR(2n) =
(2π)n

n!
.

Multiplying these for all v ∈ X gives the first formula. To obtain the asymptotic expression, just
apply Stirling’s formula to the factorials.

For ii, we compute the degree of E using the generic section s ∈ det EK which is the image
of the canonical generator of det(Kn) under φ. More or less by definition of λE,v, it satisfies the
relation

λE,v = ‖s‖det E,v · φv,∗λnv
where of course φv : Kn

v −→ EKv is the map induced by φ. The first claim of ii is the product of
these relations. The last statement follows from this since λ(A/K) = ∆1/2. 2

3.4 No global sections

Recall that the global sections of an Arakelov bundle E over X = Spec(OK)∪X∞ are by definition
the elements of the finite set

Γ(E) := EK ∩ EOA ⊆ EA.

This section deals with the following question: How big can the degree of an Arakelov bundle
without nonzero global sections be?

Note that in the special case K = Q, this corresponds to (lattice) sphere packings: In that
case, an Arakelov bundle E is just a Z-lattice in a euclidean real vector space, and Γ(E) = 0
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means that the (closed) balls of radius 1/2 centered at the lattice points are disjoint. Larger
degree corresponds to denser packings.

The famous Minkowski-Hlawka theorem asserts that there are sphere packings of a certain
density; it is proved in a nonconstructive way by averaging over the space of all lattices. In
what follows, analogous arguments will prove the existence of Arakelov bundles of certain degrees
without global sections.

To construct spaces of all Arakelov bundles E , remember that EK is a K-lattice in the free
A-module EA, i. e. a sub-vector space for which the map EK⊗K A −→ EA is bijective. Conversely,
if we fix the A-module EA and its subset EOA , then every K-lattice in EA is the generic fibre of a
unique Arakelov bundle E ′ with E ′A = EA and E ′OA

= EOA . Hence the group Gl(EA) acts on the set
of these bundles by the formula (aE ′)K := a(E ′K), and we get the usual identification of

Sl(EA)/Sl(EK)

with the set of such bundles having the same determinant as E .

Proposition 3.4.1 Let E be an Arakelov vector bundle of rank n > 1 over X.

i) There is a unique invariant probability measure τE on Sl(EA)/Sl(EK).

ii) For every integrable function Φ on EA, we have the equation∫
Sl(EA)/Sl(EK)

dτE(a)
∑

06=s∈aEK

Φ(s) = ∆−n/2 · exp deg(E)

∫
EA

Φ dλE .

Proof: The uniqueness of τE is clear. For the existence, choose a K-linear isomorphism φ :
Kn ∼−→ EK and let

c(φ) : Sln(A)/Sln(K)
∼−→ Sl(EA)/Sl(EK)

be the conjugation with φA : An ∼−→ EA. Then τE := c(φ)∗τ proves i. For ii, we use the special
case l = 1 of the mean value formula 3.2.1. If we identify An with EA by means of φA, we get∫

Sl(EA)/Sl(EK)

dτE(a)
∑

06=s∈aEK

Φ(s) = ∆−n/2
∫
An

Φ d(φA,∗λ
n)

which implies the proposition because of Lemma 3.3.2.ii. 2

Corollary 3.4.2 Let n > 1 be an integer and assume that the real number µ satisfies

µ < − 1

n
log V (n) + log

√
∆ =

d

2
(log n− 1) + log

√
∆

(2π)d
+ O

(
log n

n

)
.

Then there is an Arakelov bundle E over X with

rk(E) = n, µ(E) = µ and Γ(E) = 0.
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Proof: We compute the average number of global sections with the mean value formula just
given. Choosing a bundle E with rank n > 1 and slope µ, we get∫

Sl(EA)/Sl(EK)

card (Γ(aE) \ 0) dτE(a) = ∆−n/2 · exp(nµ) · V (n).

If µ satisfies the assumption, the right hand side of this equation is less than one and hence there
is an a ∈ Sl(EA) such that the Arakelov bundle aE has no nonzero global section. 2

Remarks 3.4.3 i) This corollary can be improved slightly, e. g. by taking into account that the
number of nonzero global sections is always a multiple of the number of roots of unity in K. This
improves the given bound by a summand proportional to 1/n. However, even in the special case
K = Q of sphere packings, according to [CoSl93] every known improvement of the corollary is by
summands tending to zero for n→∞.

ii) On the other hand, we have the following upper bound for the slope of bundles without
global sections. (At least in the special case K = Q, several people have improved it by constants,
i. e. by summands converging to a positive limit for n→∞. For an overview, see [CoSl93].)

Proposition 3.4.4 Every Arakelov bundle E over X having rank n > 0 and slope

µ(E) > − 1

n
log V (n) + log

(
2d
√

∆
)

=
d

2
(log n− 1) + log

√
2d∆

πd
+ O

(
log n

n

)
has a nonzero global section.

Proof: Because of Lemma 3.3.2, the assumption on the slope is equivalent to

λE(EOA) > 2ndλE(EA/EK).

Taking into account the adelic version [Thu96, Theorem 3] of Minkowski’s theorem on lattice
points in convex sets, this implies Γ(E) 6= 0. 2

Now recall the notion of stability. For 1 ≤ l ≤ rk(E), denote by µ
(l)
max the supremum (in fact

it is the maximum) of the slopes µ(E ′) of subbundles E ′ ⊆ E of rank l. E is said to be stable if

µ
(l)
max < µ(E) holds for all l < rk(E), and semistable if µ

(l)
max ≤ µ(E) for all l.

Theorem 3.4.5 Let an Arakelov bundle E of rank nE > 0 over the arithmetic curve X be given.
If nF is a sufficiently large integer and L is an Arakelov line bundle satisfying

µ(l)
max(E) +

deg(L)

nF
≤ d

2
(log(lnF)− 1) + log

√
∆

(2π)d
(3.1)

for all 1 ≤ l ≤ nE , then there is an Arakelov bundle F of rank nF and determinant L such that

Γ(E ⊗ F) = 0.

Corollary 3.4.6 If E is semistable of rank nE , then for every sufficiently large integer nF there
is an Arakelov bundle F of rank nF satisfying

µ(E ⊗ F) =
d

2
(log nF − 1) + log

√
∆

(2π)d
and Γ(E ⊗ F) = 0.
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Proof: The method for proving this theorem is the same as for Corollary 3.4.2: We use the mean
value formula to show that the average number of global sections is less than one. However, the
argument is more involved here because our mean value formula deals only with matrices of full
rank.

Let F be an arbitrary Arakelov bundle of rank nF > nE . Choose linear isomorphisms

φE : KnE ∼−→ EK and φF : KnF ∼−→ FK

and denote by
φA : MatnF×nE (A)

∼−→ (E ⊗ F)A

the map induced by their tensor product. Using these to identify, the mean value formula 3.2.1
takes the form ∫

Sl(FA)/Sl(FK)

dτF(a)
∑

s∈(E⊗aF)K
s/∈(E ′⊗aF)K for all E ′(E

Φ(s) = ∆−nEnF/2
∫

(E⊗F)A

Φ d(φA,∗λ
nF×nE ).

Now we take for Φ the indicator function of (E ⊗ F)OA , use Lemma 3.3.2 to evaluate the right
hand side and get∫

Sl(FA)/Sl(FK)

card

(
Γ(E ⊗ aF) \

⋃
E ′(E

Γ(E ′ ⊗ aF)

)
dτF(a) =

V (nEnF)

∆nEnF/2
exp deg(E ⊗ F).

In order to take care of all global sections, note that for every s ∈ Γ(E ⊗aF) there is a unique
minimal subbundle E ′ ⊆ E with s ∈ Γ(E ′ ⊗ aF): it is the subbundle whose generic fibre is the
image of the map sK : (aFK)dual −→ EK induced by s. So we perform a summation over all these
subbundles E ′. The arguments just given for E apply to E ′ as well, and we obtain∫

Sl(FA)/Sl(FK)

card (Γ(E ⊗ aF) \ 0) dτF(a) =

nE∑
l=1

V (lnF)

∆lnF/2
ζ

(l)
E (nF) · exp(l deg(F)) (3.2)

using the Zeta function ζ
(l)
E that is defined by

ζ
(l)
E (s) =

∑
E ′⊆E

rk(E ′)=l

exp(s · deg(E ′)). (3.3)

Remark 3.4.7 In [BaMa90] Batyrev and Manin have introduced the Zeta function of a projective

variety over K endowed with a metrized line bundle. In their language, ζ
(l)
E is the Zeta function

of the Grassmannian attached to E .

Lemma 3.4.8 There is a constant C = C(E) such that

ζ
(l)
E (s) ≤ C · exp(s · lµ(l)

max(E))

for all sufficiently large real numbers s and all 1 ≤ l ≤ nE = rk(E).
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Proof: For each real number T , denote by N
(l)
E (T ) the number of subbundles E ′ ⊆ E of rank

l and degree at least −T . It will be shown that there are real constants C1 and C2 (which are
allowed to depend on E) such that

N
(l)
E (T ) ≤ exp(C1T + C2) (3.4)

for all T . This will imply the lemma as follows:
If we order the summands in (3.3) according to their magnitude, we get

ζ
(l)
E (s) ≤

∞∑
ν=0

N
(l)
E
(
−lµ(l)

max(E) + ν + 1
)
· exp

(
s · (lµ(l)

max(E)− ν)
)

≤ exp(s · lµ(l)
max(E)) ·

∞∑
ν=0

C3

exp((s− C1)ν)

using (3.4). But the last sum is a convergent geometric series for all s > C1 and decreases as s
grows, hence the sum is bounded for s ≥ C1 + 1 and the lemma is proved up to (3.4).

Several people have given more precise asymptotic formulas for the number of points of
bounded height on projective spaces or Grassmannians over K from which (3.4) could be de-
duced. See for example [Sch79], [FMT89], [Thu92] or [Gas99]. However the statement (3.4)
needed here is so weak that the following rough form of the argument will do:

Every subbundle E ′ ⊆ E of rank l gives us a line bundle det(E ′) in the exterior power
∧l E

from which it can be reconstructed, hence

N
(l)
E (T ) ≤ N

(1)Vl E
(T ).

So without loss of generality, we can restrict ourselves to counting line bundles in E . Because
the class number of OK is finite, there is a constant C4 depending only on K such that every
Arakelov line bundle L over X has a section 0 6= s ∈ LOK for which the product over all finite
places v of ‖s‖L,v is at least exp(−C4), which is equivalent to

log
∏
v∈X∞

‖s‖L,v ≤ C4 − deg(L). (3.5)

According to Dirichlet’s Unit Theorem, the quotient of kernel modulo image in

O∗K
Q

log | . |v−→
∏
v∈X∞

R +−→ R

is compact, so (3.5) can be strengthened to

log〈s, s〉L,v ≤ C5 − deg(L)/d for all v ∈ X∞ (3.6)

by multiplying s with an appropriate unit in OK . This shows that

N
(1)
E (T ) ≤ N ′E(C5 + T/d)

where N ′E(T ) denotes the number of nonzero sections s ∈ EOK with log〈s, s〉E,v ≤ T for all infinite
places v. Since this is the number of points of the lattice

EOK ⊆
∏
v∈X∞

EKv
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in a homogeneously expanding domain, it grows linearly with the volume of that domain (for
example by [Lan70, Chapter VI, Theorem 2]) which means that

N ′E(T ) ≤ exp(dnET + C6)

and completes the proof of the lemma. 2

Now return to the proof of the theorem. We show that every integer nF > nE which is so
large that Lemma 3.4.8 holds for s = nF and

V (n) · C(E) <
1

nE

(
2πe

n

)dn/2
for all n ≥ nF

will do the trick. In fact, for every Arakelov bundle F of such a big rank nF , the average number
of global sections ∫

Sl(FA)/Sl(FK)

card (Γ(E ⊗ aF) \ 0) dτF(a)

is smaller than

1

nE

nE∑
l=1

∆−lnF/2 ·
(

2πe

lnF

)dlnF/2
· exp

(
lnF(µ(l)

max(E) + µ(F))
)

(3.7)

because of (3.2). Now let an Arakelov line bundle L satisfying the condition (3.1) of the theorem
be given and choose F as above with determinant L. Then every summand of (3.7) is at most
one, and hence ∫

Sl(FA)/Sl(FK)

card (Γ(E ⊗ aF) \ 0) dτF(a) < 1

which shows that there is an a ∈ Sl(FA) such that Γ(E ⊗ aF) = 0. 2
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