ON MODULI STACKS OF G-BUNDLES OVER A CURVE

NORBERT HOFFMANN

ABSTRACT. Let C be a smooth projective curve over an algebraically closed field k of arbitrary characteristic. Given a linear algebraic group G over k, let \mathcal{M}_G be the moduli stack of principal G-bundles on C. We determine the set of connected components $\pi_0(\mathcal{M}_G)$ for smooth connected groups G.

1. INTRODUCTION

Let C be a smooth projective algebraic curve over an algebraically closed field k. This text explains some basic properties of the moduli stack \mathcal{M}_G of algebraic principal G-bundles on C, for a linear algebraic group G over k. The arguments given are purely algebraic, and valid in any characteristic.

The stack \mathcal{M}_G is algebraic in the sense of Artin, and locally of finite type over k. Moreover, \mathcal{M}_G is smooth if G is smooth. The main purpose of this paper is to determine the set of connected components $\pi_0(\mathcal{M}_G)$ if G is smooth and connected. It turns out that the unipotent radical of G doesn't matter for this. In the case where G is reductive, Theorem 5.8 gives a canonical bijection between $\pi_0(\mathcal{M}_G)$ and the fundamental group $\pi_1(G)$, the latter being defined in terms of the root system; cf. Definition 5.4.

This statement is well-established folklore, and thus not a new result. But the published literature seems to contain no proof of it in full generality, covering also the case of positive characteristic char(k) = p > 0. For simply connected G, the result is proved in [6]; the general case is treated, from a different point of view, in the apparently unpublished preprint [11].

The proof given here is based on the maps $\mathcal{M}_G \to \mathcal{M}_H$ induced by group homomorphisms $G \to H$. In particular, it uses criteria for lifting *H*-bundles to *G*-bundles if *H* is a quotient of *G*. Corollary 3.4 states that this is always possible if *G*, *H*, and the kernel are smooth and connected; this little observation might be of independent interest.

After recalling the algebraicity of \mathcal{M}_G in Section 2, these lifting problems are studied in Section 3. Based on them, the standard deformation theory argument for smoothness of \mathcal{M}_G is recalled in Section 4. Finally, Section 5 contains the results mentioned above about connected components of \mathcal{M}_G .

2. Algebraicity

Throughout this text, we fix an algebraically closed base field k and an irreducible smooth projective curve C/k. We denote by \mathcal{M}_G the moduli stack of principal G-bundles E on C, where $G \subseteq \operatorname{GL}_n$ is a linear algebraic group.

¹⁹⁹¹ Mathematics Subject Classification. 14D20, 14F05.

Key words and phrases. principal bundle, algebraic curve, moduli stack.

The author was supported by the SFB 647: Raum - Zeit - Materie.

Remark 2.1. More precisely, \mathcal{M}_G is given as a prestack over k by the groupoid $\mathcal{M}_G(S)$ of principal G-bundles on $C \times_k S$ for each k-scheme S. This prestack is indeed a stack: the required descent for G-bundles is a special case of the standard descent for affine morphisms since G is affine.

Remark 2.2. More generally, one can consider the moduli stack $\mathcal{M}_{\mathcal{G}}$ of principal bundles under a relatively affine group scheme \mathcal{G} over C. We will use only the special case where $\mathcal{G} = V$ is (the underlying additive group scheme of) a vector bundle on C. Here principal V-bundles correspond to vector bundle extensions

$$0 \longrightarrow V \longrightarrow E \longrightarrow \mathcal{O}_C \longrightarrow 0,$$

so their moduli stack \mathcal{M}_V is the stack quotient of the affine space $\mathrm{H}^1_{\mathrm{Zar}}(C, V)$ modulo the trivial action of the additive group $\mathrm{H}^0_{\mathrm{Zar}}(C, V)$. In particular, we see that \mathcal{M}_V is a smooth connected Artin stack in this case.

Given a morphism of linear algebraic groups $\phi: G \to H$, extending the structure group of principal G-bundles to H defines a 1-morphism

$$\phi_*: \mathcal{M}_G \longrightarrow \mathcal{M}_H.$$

Fact 2.3. If $\iota : H \hookrightarrow G$ is a closed embedding, then the 1-morphism of stacks $\iota_* : \mathcal{M}_H \to \mathcal{M}_G$ is representable and locally of finite type.

Proof. (cf. [15, 3.6.7]) The homogeneous space G/H exists by Chevalley's theorem [5, III, §3, Thm. 5.4]; more precisely, G is a principal H-bundle over some quasiprojective variety X = G/H. Given a principal G-bundle $\pi : E \to C \times_k S$, reductions of its stucture group to H correspond bijectively to sections of the associated bundle $\pi_X : E \times^G X \to C \times_k S$ with fiber X.

This means that the fiber product of S and \mathcal{M}_H over \mathcal{M}_G is the functor from S-schemes to sets that sends $f: T \to S$ to the sections of $f^*\pi_X$. This functor is representable by some locally closed subscheme of an appropriate relative Hilbert scheme, which is locally of finite type over S.

By an *algebraic stack* over k, we always mean an Artin stack that is locally of finite type over k (but not necessarily quasi-compact). For example, the moduli stack \mathcal{M}_V for a vector bundle V on C is algebraic, according to Remark 2.2.

Fact 2.4. If G is a linear algebraic group, then \mathcal{M}_G is an algebraic stack.

Proof. (cf. [15, 3.6.6.]) In the case $G = GL_n$, this is well known, cf. [12, 4.14.2.1]. The general case $G \hookrightarrow GL_n$ then follows from the previous fact.

3. LIFTING PRINCIPAL BUNDLES

We say that a short sequence of linear algebraic groups

$$(3.1) 1 \longrightarrow K \longrightarrow G \xrightarrow{\pi} H \longrightarrow 1$$

is *exact* if π is faithfully flat and K is the kernel of π . Then H acts on K by conjugation in G. Given a principal H-bundle F on C, we denote by

$$K^F := K \times^H F := (K \times F)/H$$

the corresponding twisted group scheme over C with fiber K.

Proposition 3.1. Suppose that (3.1) is a short exact sequence of linear algebraic groups, with K commutative. Let F be a principal H-bundle on C.

- i) There is a canonical obstruction class $ob_F \in H^2_{fppf}(C, K^F)$, which vanishes if and only if $F \cong \pi_*E$ for some principal G-bundle E on C.
- ii) If ob_F vanishes, then the fiber of $\pi_* : \mathcal{M}_G \to \mathcal{M}_H$ over the point F is 1-isomorphic to the moduli stack \mathcal{M}_{K^F} of principal K^F -bundles.

Proof. The lifts of F to G-bundles E form a stack \mathcal{K}_F over C, which is more precisely given by the following groupoid $\mathcal{K}_F(X)$ for each C-scheme $f: X \to C$:

- Its objects are principal G-bundles \mathcal{E} on X together with isomorphisms $\pi_*(\mathcal{E}) \cong f^*(F)$ of principal H-bundles on X.
- Its morphisms are isomorphisms of principal G-bundles on X which are compatible with the identity on $f^*(F)$.

If F is trivial, then a lift of F to a principal G-bundle is nothing but a principal K-bundle, so \mathcal{K}_F is just the classifying stack $BK \times C$ in this case. In any case, F is fppf-locally trivial, so \mathcal{K}_F is an fppf-gerbe over C, whose band is the common automorphism group scheme K^F of all (local) lifts of F. The class of this gerbe in $\mathrm{H}^2_{\mathrm{fppf}}(C, K^F)$ is the required obstruction ob_F ; cf. [7, IV, Thm. 3.4.2].

If ob_F vanishes, then the gerbe $\mathcal{K}_F \to C$ admits a section, so \mathcal{K}_F is the classifying stack $B(K^F)$ over C by [12, Lemme 3.21]. Thus sections $C \to \mathcal{K}_F$ are nothing but principal K^F -bundles on C; this implies ii.

Remark 3.2. In the above situation, suppose that K is central in G. Given a principal G-bundle E with $\pi_*E \cong F$, we can explicitly describe a 1-isomorphism between $\mathcal{M}_{K^F} = \mathcal{M}_K$ and the fiber of π_* over [F] as follows:

The multiplication $\mu : K \times G \to G$ is a group homomorphism, so it induces a 1-morphism $\mu_* : \mathcal{M}_K \times \mathcal{M}_G \to \mathcal{M}_G$. Its restriction $\mu_*(_, [E]) : \mathcal{M}_K \to \mathcal{M}_G$ is then a 1-isomorphism onto the fiber of π_* over [F].

Remark 3.3. Up to now, we have not used the assumption $\dim(C) = 1$. Using it, one can show that the obstruction ob_F vanishes in the following two cases:

i) Assume $K \cong \mathbb{G}_a^r$, and that the action $H \to \operatorname{Aut}(K)$ factors through GL_r . (The latter is automatic for $K \cong \mathbb{G}_a$, since $\operatorname{Aut}(K) \cong \mathbb{G}_m$ in this situation. But for r > 1 and $\operatorname{char}(k) = p > 0$, this is actually a condition.) Then K^F is a vector bundle on C, and

$$\mathrm{H}^2_{\mathrm{fppf}}(C,K^F) = \mathrm{H}^2_{\mathrm{\acute{e}t}}(C,K^F) = \mathrm{H}^2_{\mathrm{Zar}}(C,K^F) = 0$$

due to [8, Thm. 11.7], [10, Exp. VII, Prop. 4.3], and the assumption dim(C) = 1.

ii) Assume $K \cong \mathbb{G}_m^r$, and that H is connected. Then $\operatorname{Aut}(K) \cong \operatorname{GL}_r(\mathbb{Z})$ is discrete, so the action of H on K is trivial. Thus K^F is just the split torus \mathbb{G}_m^r over C, and $\operatorname{H}^2_{\operatorname{fupf}}(C, K^F) = \operatorname{H}^2_{\operatorname{\acute{e}t}}(C, K^F) = 0$ by Tsen's theorem.

Corollary 3.4. If $1 \to K \longrightarrow G \xrightarrow{\pi} H \to 1$ is a short exact sequence of smooth connected linear algebraic groups, then $\pi_* : \mathcal{M}_G \to \mathcal{M}_H$ is surjective.

Proof. Choose a Borel subgroup B_G in G. Then $B_H := \pi(B_G)$ is a Borel subgroup in H due to [3, Proposition (11.14)]. Every principal H-bundle F on C admits a reduction of its structure group to B_H by [6, Theorem 1 and Remark 2.e].

NORBERT HOFFMANN

The identity component $B_K^0 \subseteq B_K$ of the intersection $B_K := K \cap B_G$ is a Borel subgroup in K due to [3, Proposition (11.14)] again. As B_K^0 is normal in B_K , it follows that B_K is contained in the normalizer of B_K^0 in K, which is just B_K^0 itself by [3, Theorem (11.15)]. Thus $B_K^0 = B_K$, and the sequence $1 \to B_K \to B_G \to B_H \to 1$ is again exact. Replacing the given exact sequence by this one, we may assume without loss of generality that the three groups G, H and K are all solvable.

Using induction on dim(K), we may then assume dim(K) = 1, which means $K \cong \mathbb{G}_a$ or $K \cong \mathbb{G}_m$. In this situation, the obstruction against lifting principal H-bundles on C to principal G-bundles vanishes by Remark 3.3. This shows that the induced 1-morphism $\pi_* : \mathcal{M}_G \to \mathcal{M}_H$ is indeed surjective. \Box

4. Smoothness

From now on, we will concentrate on *smooth* linear algebraic groups G over k. Then every principal G-bundle is étale-locally trivial.

Proposition 4.1. If the group G is smooth, then the stack \mathcal{M}_G is also smooth.

Proof. (See [1, 4.5.1 and 8.1.9] for a different presentation of similar arguments.) We verify that \mathcal{M}_G satisfies the infinitesimal criterion for smoothness.

Let a pair (A, \mathfrak{m}) and $(A, \tilde{\mathfrak{m}})$ of local artinian k-algebras with residue field k be given, such that $A = \tilde{A}/(\nu)$ for some $\nu \in \tilde{A}$ with $\tilde{\mathfrak{m}} \cdot \nu = 0$. We have to show that every principal G-bundle \mathcal{E} on $C \otimes_k A$ can be extended to $C \otimes_k \tilde{A}$.

We define a functor G_A from k-schemes to groups by $G_A(S) := G(S \otimes_k A)$. Then G_A is a smooth linear algebraic group, and the infinitesimal theory of group schemes [5, II, §4, Thm. 3.5] yields an exact sequence

$$1 \longrightarrow \mathfrak{g} \longrightarrow G_{\tilde{A}} \longrightarrow G_A \longrightarrow 1$$

where \mathfrak{g} is (the underlying additive group of) the Lie algebra of G.

As C and $C \otimes_k A$ are homeomorphic for the étale topology, the étale-locally trivial principal G-bundle \mathcal{E} on $C \otimes_k A$ corresponds to a principal G_A -bundle \mathcal{E} on C. Using Proposition 3.1 and Remark 3.3.i, we can lift this G_A -bundle to a principal $G_{\tilde{A}}$ -bundle on C. This yields the required G-bundle on $C \otimes_k \tilde{A}$.

Corollary 4.2. If $1 \to K \longrightarrow G \xrightarrow{\pi} H \to 1$ is a short exact sequence of smooth linear algebraic groups, then $\pi_* : \mathcal{M}_G \to \mathcal{M}_H$ is also smooth.

Proof. We know already that \mathcal{M}_G and \mathcal{M}_H are smooth over k, so it suffices to show that the 1-morphism $\pi_* : \mathcal{M}_G \to \mathcal{M}_H$ is submersive.

Let *E* be a principal *G*-bundle on *C*, with induced *H*-bundle $F := \pi_*(E)$. Given an extension of *F* to a principal *H*-bundle \mathcal{F} on $C \otimes_k k[\varepsilon]$ with $\varepsilon^2 = 0$, we have to extend *E* to a principal *G*-bundle \mathcal{E} on $C \otimes_k k[\varepsilon]$ such that the identity $\pi_*(E) = F$ can be extended to an isomorphism $\pi_*(\mathcal{E}) \cong \mathcal{F}$.

The given datum (E, F, \mathcal{F}) corresponds to a principal $(G \times_H H_{k[\varepsilon]})$ -bundle on C. Using the exact sequence of groups

$$1 \longrightarrow \mathfrak{k} := \operatorname{Lie}(K) \longrightarrow G_{k[\varepsilon]} \longrightarrow G \times_H H_{k[\varepsilon]} \longrightarrow 1,$$

we can lift it to a principal $G_{k[\varepsilon]}$ -bundle on C, according to Proposition 3.1 and Remark 3.3.i. This extends E to a G-bundle \mathcal{E} on $C \otimes_k k[\varepsilon]$, as required. \Box

5. Connected components

In this section, we suppose that the linear algebraic group G is smooth and connected. The aim is to describe the set of connected components $\pi_0(\mathcal{M}_G)$.

Proposition 5.1. If $1 \to U \to G \to H \to 1$ is a short exact sequence of smooth connected linear algebraic groups with U unipotent, then $\pi_0(\mathcal{M}_G) = \pi_0(\mathcal{M}_H)$.

Proof. The induced 1-morphism $\mathcal{M}_G \to \mathcal{M}_H$ is smooth by Corollary 4.2, and surjective by Corollary 3.4. We have to show that its fibers are connected.

Let $B_H \subseteq H$ be a Borel subgroup. Every principal *H*-bundle on *C* admits a reduction of its structure group to B_H by [6, Theorem 1 and Remark 2.e]. Replacing *H* by B_H and *G* by the inverse image B_G of B_H if necessary, we may thus assume that *G* and *H* are solvable.

Using induction on dim(U), we may then moreover assume $U \cong \mathbb{G}_a$. In this situation, the fibers in question have the form \mathcal{M}_L for line bundles L on C, according to Proposition 3.1.ii; see also Remark 3.3.i. Hence these fibers are connected due to Remark 2.2.

In particular, $\pi_0(\mathcal{M}_G) = \pi_0(\mathcal{M}_{G/G_u})$, where $G_u \subseteq G$ denotes the unipotent radical. Thus it suffices to determine the set $\pi_0(\mathcal{M}_G)$ for reductive groups G.

Given any torus $T \cong \mathbb{G}_m^r$ over k, we denote its cocharacter lattice by

$$X_*(T) := \operatorname{Hom}(\mathbb{G}_m, T) \cong \mathbb{Z}^r.$$

Sending line bundles to their degree defines a bijection $\pi_0(\mathcal{M}_{\mathbb{G}_m}) \xrightarrow{\sim} \mathbb{Z}$, since the Jacobian $\operatorname{Pic}^0(C)$ is connected. Thus we obtain an induced canonical bijection

$$\pi_0(\mathcal{M}_T) \xrightarrow{\sim} X_*(T)$$

If T appears in a central extension of smooth connected linear algebraic groups

$$1 \longrightarrow T \longrightarrow G \xrightarrow{\pi} H \longrightarrow 1$$

then the multiplication $\mu: T \times G \to G$ is a group homomorphism, and

$$\mu_*: \pi_0(\mathcal{M}_T) \times \pi_0(\mathcal{M}_G) \longrightarrow \pi_0(\mathcal{M}_G)$$

is an action of the group $\pi_0(\mathcal{M}_T)$ on the set $\pi_0(\mathcal{M}_G)$.

Remark 5.2. Actually the group stack \mathcal{M}_T acts on \mathcal{M}_G , and $\pi_* : \mathcal{M}_G \to \mathcal{M}_H$ is a torsor under this action; see [2, Section 5.1]. But we won't use these stack notions here, since all we need can readily be said in more elementary language.

Proposition 5.3. In the above situation, $\pi_0(\mathcal{M}_H) = \pi_0(\mathcal{M}_G)/\pi_0(\mathcal{M}_T)$.

Proof. The induced 1-morphism $\pi_* : \mathcal{M}_G \to \mathcal{M}_H$ is surjective by Corollary 3.4, and smooth by Corollary 4.2. In particular, π_* is open; its fibers are all isomorphic to \mathcal{M}_T by Proposition 3.1.ii. These properties imply the proposition:

Since π_* is surjective, it induces a surjective map $\pi_0(\mathcal{M}_G) \to \pi_0(\mathcal{M}_H)$. As it is invariant under the action of $\pi_0(\mathcal{M}_T)$, it descends to a surjective map

$$\pi_0(\mathcal{M}_G)/\pi_0(\mathcal{M}_T) \longrightarrow \pi_0(\mathcal{M}_H).$$

To check that this map is also injective, let $\pi_0(\mathcal{M}_G) = \coprod_i X_i$ be the decomposition into $\pi_0(\mathcal{M}_T)$ -orbits. It correspond to a decomposition $\mathcal{M}_G = \coprod_i \mathcal{U}_i$ into open substacks. Due to Remark 3.2, each fiber of π_* is contained in a single \mathcal{U}_i , so the images $\pi_*(\mathcal{U}_i) \subseteq \mathcal{M}_H$ are still disjoint. As π_* is open, $\pi_*(\mathcal{U}_i)$ is open in \mathcal{M}_H . They form a decomposition of \mathcal{M}_H , since π_* is surjective. Hence different $\pi_0(\mathcal{M}_T)$ -orbits in $\pi_0(\mathcal{M}_G)$ map to different components of \mathcal{M}_H .

Now suppose that the smooth and connected linear algebraic group G over k is reductive. Choosing a maximal torus $T_G \subseteq G$, let

$$X_{\text{coroots}} \subseteq X_*(T_G)$$

denote the subgroup generated by the coroots of G.

Definition 5.4. The fundamental group of G is $\pi_1(G) := X_*(T_G)/X_{\text{coroots}}$.

Note that the Weyl group of (G, T_G) acts trivially on $\pi_1(G)$. Hence this fundamental group does not depend on the choice of the maximal torus T_G , up to a *canonical* isomorphism. G is called *simply connected* if $\pi_1(G)$ is trivial.

Remark 5.5. If $k = \mathbb{C}$, then $\pi_1(G)$ coincides with the usual topological fundamental group $\pi_1^{\text{top}}(G)$ of G as a complex Lie group. If more generally char(k) = 0, then $\pi_1(G)$ coincides with $\pi_1^{\text{top}}(G \otimes_k \mathbb{C})$ for every embedding $k \hookrightarrow \mathbb{C}$.

Remark 5.6. i) Due to [4], each finite quotient $\pi_1(G) \twoheadrightarrow \mathbb{Z}/n_1 \times \cdots \times \mathbb{Z}/n_r$ corresponds to a central isogeny $\widetilde{G} \twoheadrightarrow G$. Its kernel is isomorphic to $\mu_{n_1} \times \cdots \times \mu_{n_r}$.

ii) In particular, étale isogenies $\widetilde{G} \twoheadrightarrow G$ correspond to finite quotients of $\pi_1(G)$ whose order is not divisible by the characteristic of k.

iii) If G is semisimple, then $\pi_1(G)$ itself is finite. The corresponding central isogeny $\widetilde{G} \twoheadrightarrow G$ is called the *universal covering* of G.

Remark 5.7. i) Denote by $\pi_1^{\text{ét}}(G)$ the étale fundamental group of G, and by $\hat{\pi}_1(G)$ the profinite completion of $\pi_1(G)$. Let $\pi_1^{\text{ét}}(G) \twoheadrightarrow \pi_1^{\text{ét}}(G)'$ and $\hat{\pi}_1(G) \twoheadrightarrow \hat{\pi}_1(G)'$ be identities if char(k) = 0, and the largest prime-to-p quotients if char(k) = p > 0. Then Remark 5.6.ii implies that $\pi_1^{\text{ét}}(G)'$ is canonically isomorphic to $\hat{\pi}_1(G)'$.

To verify this, one has to show, for every connected scheme X together with a finite étale morphism $\pi: X \to G$ such that $\deg(\pi)$ is not divisible by $\operatorname{char}(k)$, that there is a group structure on X such that π is an isogeny. This can be checked like the analogous statement in topology, using the Künneth formula

$$\pi_1^{\text{\acute{e}t}}(G \times G)' = \pi_1^{\text{\acute{e}t}}(G)' \times \pi_1^{\text{\acute{e}t}}(G)'$$

proved in [9, Exp. XIII, Prop. 4.6] and [13, Prop. 4.7].

ii) Suppose char(k) = p > 0. Then each finite quotient of $\pi_1(G)$ which is a p-group corresponds to a purely inseparable central isogeny $\widetilde{G} \to G$. On the other hand, the p-part of $\pi_1^{\text{ét}}(G)$ is huge and in particular non-abelian; cf. for example [14]. Thus the p-parts of $\hat{\pi}_1(G)$ and of $\pi_1^{\text{ét}}(G)$ don't seem to be related.

Theorem 5.8. If the linear algebraic group G over k is smooth, connected, and reductive, then one has a canonical bijection $\pi_0(\mathcal{M}_G) \cong \pi_1(G)$.

Proof. We partly follow [6, Proposition 5], where the connectedness of \mathcal{M}_G for simply connected G is proved. Another reference is [11, Proposition 3.15].

Let $B_G \subseteq G$ be a Borel subgroup containing the maximal torus T_G . Then $\pi_0(\mathcal{M}_{T_G}) = \pi_0(\mathcal{M}_{B_G})$ by Proposition 5.1. The inclusion $B_G \hookrightarrow G$ induces a map

(5.1)
$$X_*(T_G) = \pi_0(\mathcal{M}_{T_G}) = \pi_0(\mathcal{M}_{B_G}) \longrightarrow \pi_0(\mathcal{M}_G).$$

This map is surjective, because every principal G-bundle on C admits a reduction of its structure group to B_G by [6, Theorem 1 and Remark 2.e].

We claim that this map (5.1) is constant on cosets modulo X_{coroots} . Given a coroot $\alpha \in X_*(T_G)$ of G and a cocharacter $\delta \in X_*(T_G)$, it suffices to show that δ and $\delta + \alpha$ have the same image in $\pi_0(\mathcal{M}_G)$. As the inclusion $T_G \hookrightarrow G$ factors through the subgroup of semisimple rank one $G_\alpha \subseteq G$ given by α , we may assume without loss of generality that G has semisimple rank one. Splitting off any direct factor \mathbb{G}_m of G reduces us to the cases $G \cong \mathrm{SL}_2$, $G \cong \mathrm{GL}_2$, or $G \cong \mathrm{PGL}_2$.

To deal with these three cases, we choose a closed point $P \in C(k)$. Let L and L' be invertible sheaves on C; in the case $G \cong \operatorname{SL}_2$, we assume $L \otimes L' \cong \mathcal{O}_C(P)$. For every line ℓ in the two-dimensional vector space $L_P \oplus L'_P$, its inverse image subsheaf $E_{\ell} \subseteq L \oplus L'$ defines a G-bundle on C; thus we obtain a \mathbb{P}^1 -family of G-bundles on C. This family connects the two G-bundles defined by $L(-P) \oplus L'$ and by $L \oplus L'(-P)$, which come from the maximal torus $T_G \subseteq G$. Thus we see that the elements δ and $\delta + \alpha$ of $X_*(T_G) = \pi_0(\mathcal{M}_{T_G})$ indeed have the same image in $\pi_0(\mathcal{M}_G)$. Hence the above map (5.1) descends to a surjective map

(5.2)
$$\pi_1(G) = X_*(T_G) / X_{\text{coroots}} \longrightarrow \pi_0(\mathcal{M}_G)$$

Note that this map does not depend on the choice of the maximal torus $T_G \subseteq G$. Thus it is functorial in G, in the sense that the diagram

commutes for every homomorphism $\varphi: G \to H$ of smooth, connected, reductive algebraic groups.

Finally, we have to show that this canonical map (5.2) is injective. We first consider the case where the commutator subgroup $[G, G] \subseteq G$ is simply connected. Then $\pi_1(G) = \pi_1(G/[G, G])$, so the required injectivity for G follows by functoriality from the already verified injectivity for the torus G/[G, G].

Next we consider the case where G is semisimple, so $\pi_1(G)$ is finite. Let μ be the kernel of the universal covering $\widetilde{G} \twoheadrightarrow G$. We choose an embedding $\mu \hookrightarrow T$ into a torus T, and denote by \widehat{G} the pushout of linear algebraic groups

$$\begin{array}{c} \mu \longrightarrow \widetilde{G} \\ \downarrow & \qquad \downarrow \\ T \longrightarrow \widehat{G}. \end{array}$$

By construction, \hat{G} is smooth, connected, reductive, and $[\hat{G}, \hat{G}] = \tilde{G}$ is simply connected. Moreover, we have an exact sequence

$$1 \longrightarrow T \longrightarrow \widehat{G} \longrightarrow G \longrightarrow 1.$$

Using Proposition 5.3, the injectivity for G follows from the injectivity for \hat{G} , which has already been proved in the previous case.

Finally, we consider the case where G is reductive. If $\pi : G \to H$ is a central isogeny, then the induced map $\pi_1(G) \to \pi_1(H)$ is injective; hence we may replace G by H without loss of generality. We take $H := G/[G,G] \times G/Z_G$, where $Z_G \subseteq G$ is the center. Splitting off the torus G/[G,G] reduces us to the case where G is of adjoint type. This is covered by the previous case.

NORBERT HOFFMANN

References

- K. Behrend. The Lefschetz Trace Formula for the Moduli Stack of Principal Bundles. PhD thesis, Berkeley, 1991. http://www.math.ubc.ca/~behrend/thesis.html.
- [2] I. Biswas and N. Hoffmann. The line bundles on moduli stacks of principal bundles on a curve. preprint math:0805.2915. available at http://www.arXiv.org.
- [3] A. Borel. Linear algebraic groups. New York Amsterdam: W. A. Benjamin, 1969.
- [4] C. Chevalley. Les isogénies. Séminaire C. Chevalley 1956-1958: Classification des groupes de Lie algébriques, Exposé 18. Paris: Secrétariat mathématique, 1958.
- [5] M. Demazure and P. Gabriel. Groupes algébriques. Tome I. Amsterdam: North-Holland Publishing Company, 1970.
- [6] V.G. Drinfeld and C. Simpson. B-structures on G-bundles and local triviality. Math. Res. Lett., 2(6):823–829, 1995.
- [7] J. Giraud. Cohomologie non abelienne. Grundlehren, Band 179. Berlin-Heidelberg-New York: Springer-Verlag, 1971.
- [8] A. Grothendieck. Le groupe de Brauer. III: Exemples et complements. Dix exposés sur la cohomologie des schémas, Advanced Studies Pure Math. 3, 88-188, 1968.
- [9] A. Grothendieck et al. SGA 1: Revêtements étales et groupe fondamental. Lecture Notes in Mathematics, Vol. 224. Springer-Verlag, Berlin, 1971.
- [10] A. Grothendieck et al. SGA 4: Théorie des topos et cohomologie étale des schémas. Tome 2. Lecture Notes in Mathematics, Vol. 270. Springer-Verlag, Berlin, 1972.
- [11] Y.I. Holla. Parabolic reductions of principal bundles. preprint math.AG/0204219. available at http://www.arXiv.org.
- [12] G. Laumon and L. Moret-Bailly. *Champs algébriques*. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, Band 39. Berlin: Springer, 2000.
- [13] F. Orgogozo. Altérations et groupe fondamental premier à p. Bull. Soc. Math. Fr., 131(1):123– 147, 2003.
- [14] M. Raynaud. Revêtements de la droite affine en caractéristique p > 0 et conjecture d'Abhyankar. Invent. Math., 116(1-3):425–462, 1994.
- [15] C. Sorger. Lectures on moduli of principal G-bundles over algebraic curves. in: L. Göttsche (ed.), Moduli Spaces in Algebraic Geometry (Trieste, ICTP, 1999), 1-57. available at http://users.ictp.it/~pub_off/lectures/vol1.html.

Mathematisches Institut der Freien Universität, Arnimallee 3, 14195 Berlin, Germany

E-mail address: norbert.hoffmann@fu-berlin.de

8