
ON MODULI STACKS OF G-BUNDLES OVER A CURVE

NORBERT HOFFMANN

Abstract. Let C be a smooth projective curve over an algebraically closed
field k of arbitrary characteristic. Given a linear algebraic group G over k, let

MG be the moduli stack of principal G-bundles on C. We determine the set

of connected components π0(MG) for smooth connected groups G.

1. Introduction

Let C be a smooth projective algebraic curve over an algebraically closed field
k. This text explains some basic properties of the moduli stack MG of algebraic
principal G-bundles on C, for a linear algebraic group G over k. The arguments
given are purely algebraic, and valid in any characteristic.

The stack MG is algebraic in the sense of Artin, and locally of finite type over
k. Moreover, MG is smooth if G is smooth. The main purpose of this paper is to
determine the set of connected components π0(MG) if G is smooth and connected.
It turns out that the unipotent radical of G doesn’t matter for this. In the case
where G is reductive, Theorem 5.8 gives a canonical bijection between π0(MG) and
the fundamental group π1(G), the latter being defined in terms of the root system;
cf. Definition 5.4.

This statement is well-established folklore, and thus not a new result. But the
published literature seems to contain no proof of it in full generality, covering also
the case of positive characteristic char(k) = p > 0. For simply connected G, the
result is proved in [6]; the general case is treated, from a different point of view, in
the apparently unpublished preprint [11].

The proof given here is based on the maps MG → MH induced by group
homomorphisms G → H. In particular, it uses criteria for lifting H-bundles to
G-bundles if H is a quotient of G. Corollary 3.4 states that this is always possible
if G, H, and the kernel are smooth and connected; this little observation might be
of independent interest.

After recalling the algebraicity of MG in Section 2, these lifting problems are
studied in Section 3. Based on them, the standard deformation theory argument for
smoothness of MG is recalled in Section 4. Finally, Section 5 contains the results
mentioned above about connected components of MG.

2. Algebraicity

Throughout this text, we fix an algebraically closed base field k and an irreducible
smooth projective curve C/k. We denote by MG the moduli stack of principal G-
bundles E on C, where G ⊆ GLn is a linear algebraic group.
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Remark 2.1. More precisely, MG is given as a prestack over k by the groupoid
MG(S) of principal G-bundles on C ×k S for each k-scheme S. This prestack is
indeed a stack: the required descent for G-bundles is a special case of the standard
descent for affine morphisms since G is affine.

Remark 2.2. More generally, one can consider the moduli stack MG of principal
bundles under a relatively affine group scheme G over C. We will use only the
special case where G = V is (the underlying additive group scheme of) a vector
bundle on C. Here principal V -bundles correspond to vector bundle extensions

0 −→ V −→ E −→ OC −→ 0,

so their moduli stack MV is the stack quotient of the affine space H1
Zar(C, V )

modulo the trivial action of the additive group H0
Zar(C, V ). In particular, we see

that MV is a smooth connected Artin stack in this case.

Given a morphism of linear algebraic groups φ : G→ H, extending the structure
group of principal G-bundles to H defines a 1-morphism

φ∗ :MG −→MH .

Fact 2.3. If ι : H ↪→ G is a closed embedding, then the 1-morphism of stacks
ι∗ :MH →MG is representable and locally of finite type.

Proof. (cf. [15, 3.6.7]) The homogeneous space G/H exists by Chevalley’s theorem
[5, III, §3, Thm. 5.4]; more precisely, G is a principal H-bundle over some quasipro-
jective variety X = G/H. Given a principal G-bundle π : E → C ×k S, reductions
of its stucture group to H correspond bijectively to sections of the associated bundle
πX : E ×G X → C ×k S with fiber X.

This means that the fiber product of S and MH over MG is the functor from
S-schemes to sets that sends f : T → S to the sections of f∗πX . This functor is
representable by some locally closed subscheme of an appropriate relative Hilbert
scheme, which is locally of finite type over S. �

By an algebraic stack over k, we always mean an Artin stack that is locally of
finite type over k (but not necessarily quasi-compact). For example, the moduli
stack MV for a vector bundle V on C is algebraic, according to Remark 2.2.

Fact 2.4. If G is a linear algebraic group, then MG is an algebraic stack.

Proof. (cf. [15, 3.6.6.]) In the case G = GLn, this is well known, cf. [12, 4.14.2.1].
The general case G ↪→ GLn then follows from the previous fact. �

3. Lifting principal bundles

We say that a short sequence of linear algebraic groups

(3.1) 1 −→ K −→ G
π−→ H −→ 1

is exact if π is faithfully flat and K is the kernel of π. Then H acts on K by
conjugation in G. Given a principal H-bundle F on C, we denote by

KF := K ×H F := (K × F )/H

the corresponding twisted group scheme over C with fiber K.

Proposition 3.1. Suppose that (3.1) is a short exact sequence of linear algebraic
groups, with K commutative. Let F be a principal H-bundle on C.
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i) There is a canonical obstruction class obF ∈ H2
fppf(C,K

F ), which vanishes
if and only if F ∼= π∗E for some principal G-bundle E on C.

ii) If obF vanishes, then the fiber of π∗ : MG → MH over the point F is
1-isomorphic to the moduli stack MKF of principal KF -bundles.

MKF //

��

MG

π∗

��
Spec(k) F //MH

Proof. The lifts of F to G-bundles E form a stack KF over C, which is more
precisely given by the following groupoid KF (X) for each C-scheme f : X → C:

• Its objects are principal G-bundles E on X together with isomorphisms
π∗(E) ∼= f∗(F ) of principal H-bundles on X.
• Its morphisms are isomorphisms of principal G-bundles on X which are

compatible with the identity on f∗(F ).
If F is trivial, then a lift of F to a principal G-bundle is nothing but a principal
K-bundle, so KF is just the classifying stack BK × C in this case. In any case, F
is fppf-locally trivial, so KF is an fppf-gerbe over C, whose band is the common
automorphism group scheme KF of all (local) lifts of F . The class of this gerbe in
H2

fppf(C,K
F ) is the required obstruction obF ; cf. [7, IV, Thm. 3.4.2].

If obF vanishes, then the gerbe KF → C admits a section, so KF is the classifying
stack B(KF ) over C by [12, Lemme 3.21]. Thus sections C → KF are nothing but
principal KF -bundles on C; this implies ii. �

Remark 3.2. In the above situation, suppose that K is central in G. Given a
principal G-bundle E with π∗E ∼= F , we can explicitly describe a 1-isomorphism
between MKF =MK and the fiber of π∗ over [F ] as follows:

The multiplication µ : K × G → G is a group homomorphism, so it induces a
1-morphism µ∗ :MK ×MG →MG. Its restriction µ∗( , [E]) :MK →MG is then
a 1-isomorphism onto the fiber of π∗ over [F ].

Remark 3.3. Up to now, we have not used the assumption dim(C) = 1. Using it,
one can show that the obstruction obF vanishes in the following two cases:

i) Assume K ∼= Gr
a, and that the action H → Aut(K) factors through GLr.

(The latter is automatic for K ∼= Ga, since Aut(K) ∼= Gm in this situation. But
for r > 1 and char(k) = p > 0, this is actually a condition.) Then KF is a vector
bundle on C, and

H2
fppf(C,K

F ) = H2
ét(C,K

F ) = H2
Zar(C,K

F ) = 0

due to [8, Thm. 11.7], [10, Exp. VII, Prop. 4.3], and the assumption dim(C) = 1.
ii) Assume K ∼= Gr

m, and that H is connected. Then Aut(K) ∼= GLr(Z) is
discrete, so the action of H on K is trivial. Thus KF is just the split torus Gr

m

over C, and H2
fppf(C,K

F ) = H2
ét(C,K

F ) = 0 by Tsen’s theorem.

Corollary 3.4. If 1 → K −→ G
π−→ H → 1 is a short exact sequence of smooth

connected linear algebraic groups, then π∗ :MG →MH is surjective.

Proof. Choose a Borel subgroup BG in G. Then BH := π(BG) is a Borel subgroup
in H due to [3, Proposition (11.14)]. Every principal H-bundle F on C admits a
reduction of its structure group to BH by [6, Theorem 1 and Remark 2.e].
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The identity component B0
K ⊆ BK of the intersection BK := K ∩BG is a Borel

subgroup in K due to [3, Proposition (11.14)] again. As B0
K is normal in BK , it

follows that BK is contained in the normalizer of B0
K in K, which is just B0

K itself by
[3, Theorem (11.15)]. Thus B0

K = BK , and the sequence 1→ BK → BG → BH → 1
is again exact. Replacing the given exact sequence by this one, we may assume
without loss of generality that the three groups G, H and K are all solvable.

Using induction on dim(K), we may then assume dim(K) = 1, which means
K ∼= Ga or K ∼= Gm. In this situation, the obstruction against lifting principal
H-bundles on C to principal G-bundles vanishes by Remark 3.3. This shows that
the induced 1-morphism π∗ :MG →MH is indeed surjective. �

4. Smoothness

From now on, we will concentrate on smooth linear algebraic groups G over k.
Then every principal G-bundle is étale-locally trivial.

Proposition 4.1. If the group G is smooth, then the stack MG is also smooth.

Proof. (See [1, 4.5.1 and 8.1.9] for a different presentation of similar arguments.)
We verify that MG satisfies the infinitesimal criterion for smoothness.

Let a pair (A,m) and (Ã, m̃) of local artinian k-algebras with residue field k be
given, such that A = Ã/(ν) for some ν ∈ Ã with m̃ · ν = 0. We have to show that
every principal G-bundle E on C ⊗k A can be extended to C ⊗k Ã.

We define a functor GA from k-schemes to groups by GA(S) := G(S ⊗k A).
Then GA is a smooth linear algebraic group, and the infinitesimal theory of group
schemes [5, II, §4, Thm. 3.5] yields an exact sequence

1 −→ g −→ GÃ −→ GA −→ 1

where g is (the underlying additive group of) the Lie algebra of G.
As C and C ⊗k A are homeomorphic for the étale topology, the étale-locally

trivial principal G-bundle E on C ⊗k A corresponds to a principal GA-bundle E
on C. Using Proposition 3.1 and Remark 3.3.i, we can lift this GA-bundle to a
principal GÃ-bundle on C. This yields the required G-bundle on C ⊗k Ã. �

Corollary 4.2. If 1 → K −→ G
π−→ H → 1 is a short exact sequence of smooth

linear algebraic groups, then π∗ :MG →MH is also smooth.

Proof. We know already that MG and MH are smooth over k, so it suffices to
show that the 1-morphism π∗ :MG →MH is submersive.

Let E be a principal G-bundle on C, with induced H-bundle F := π∗(E). Given
an extension of F to a principal H-bundle F on C ⊗k k[ε] with ε2 = 0, we have to
extend E to a principal G-bundle E on C ⊗k k[ε] such that the identity π∗(E) = F
can be extended to an isomorphism π∗(E) ∼= F .

The given datum (E,F,F) corresponds to a principal (G ×H Hk[ε])-bundle on
C. Using the exact sequence of groups

1 −→ k := Lie(K) −→ Gk[ε] −→ G×H Hk[ε] −→ 1,

we can lift it to a principal Gk[ε]-bundle on C, according to Proposition 3.1 and
Remark 3.3.i. This extends E to a G-bundle E on C ⊗k k[ε], as required. �
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5. Connected components

In this section, we suppose that the linear algebraic group G is smooth and
connected. The aim is to describe the set of connected components π0(MG).

Proposition 5.1. If 1 → U → G → H → 1 is a short exact sequence of smooth
connected linear algebraic groups with U unipotent, then π0(MG) = π0(MH).

Proof. The induced 1-morphism MG → MH is smooth by Corollary 4.2, and
surjective by Corollary 3.4. We have to show that its fibers are connected.

Let BH ⊆ H be a Borel subgroup. Every principal H-bundle on C admits a
reduction of its structure group to BH by [6, Theorem 1 and Remark 2.e]. Replacing
H by BH and G by the inverse image BG of BH if necessary, we may thus assume
that G and H are solvable.

Using induction on dim(U), we may then moreover assume U ∼= Ga. In this
situation, the fibers in question have the formML for line bundles L on C, according
to Proposition 3.1.ii; see also Remark 3.3.i. Hence these fibers are connected due
to Remark 2.2. �

In particular, π0(MG) = π0(MG/Gu
), where Gu ⊆ G denotes the unipotent

radical. Thus it suffices to determine the set π0(MG) for reductive groups G.
Given any torus T ∼= Gr

m over k, we denote its cocharacter lattice by

X∗(T ) := Hom(Gm, T ) ∼= Zr.

Sending line bundles to their degree defines a bijection π0(MGm) ∼−→ Z, since the
Jacobian Pic0(C) is connected. Thus we obtain an induced canonical bijection

π0(MT ) ∼−→ X∗(T ).

If T appears in a central extension of smooth connected linear algebraic groups

1 −→ T −→ G
π−→ H −→ 1,

then the multiplication µ : T ×G→ G is a group homomorphism, and

µ∗ : π0(MT )× π0(MG) −→ π0(MG)

is an action of the group π0(MT ) on the set π0(MG).

Remark 5.2. Actually the group stackMT acts onMG, and π∗ :MG →MH is a
torsor under this action; see [2, Section 5.1]. But we won’t use these stack notions
here, since all we need can readily be said in more elementary language.

Proposition 5.3. In the above situation, π0(MH) = π0(MG)/π0(MT ).

Proof. The induced 1-morphism π∗ : MG → MH is surjective by Corollary 3.4,
and smooth by Corollary 4.2. In particular, π∗ is open; its fibers are all isomorphic
to MT by Proposition 3.1.ii. These properties imply the proposition:

Since π∗ is surjective, it induces a surjective map π0(MG)→ π0(MH). As it is
invariant under the action of π0(MT ), it descends to a surjective map

π0(MG)/π0(MT ) −→ π0(MH).

To check that this map is also injective, let π0(MG) =
∐
iXi be the decomposition

into π0(MT )-orbits. It correspond to a decomposition MG =
∐
i Ui into open

substacks. Due to Remark 3.2, each fiber of π∗ is contained in a single Ui, so the
images π∗(Ui) ⊆MH are still disjoint. As π∗ is open, π∗(Ui) is open inMH . They
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form a decomposition ofMH , since π∗ is surjective. Hence different π0(MT )-orbits
in π0(MG) map to different components of MH . �

Now suppose that the smooth and connected linear algebraic group G over k is
reductive. Choosing a maximal torus TG ⊆ G, let

Xcoroots ⊆ X∗(TG)

denote the subgroup generated by the coroots of G.

Definition 5.4. The fundamental group of G is π1(G) := X∗(TG)/Xcoroots.

Note that the Weyl group of (G,TG) acts trivially on π1(G). Hence this fun-
damental group does not depend on the choice of the maximal torus TG, up to a
canonical isomorphism. G is called simply connected if π1(G) is trivial.

Remark 5.5. If k = C, then π1(G) coincides with the usual topological fundamental
group πtop

1 (G) of G as a complex Lie group. If more generally char(k) = 0, then
π1(G) coincides with πtop

1 (G⊗k C) for every embedding k ↪→ C.

Remark 5.6. i) Due to [4], each finite quotient π1(G) � Z/n1 × · · · × Z/nr corre-
sponds to a central isogeny G̃ � G. Its kernel is isomorphic to µn1 × · · · × µnr .

ii) In particular, étale isogenies G̃ � G correspond to finite quotients of π1(G)
whose order is not divisible by the characteristic of k.

iii) If G is semisimple, then π1(G) itself is finite. The corresponding central
isogeny G̃ � G is called the universal covering of G.

Remark 5.7. i) Denote by πét
1 (G) the étale fundamental group of G, and by π̂1(G)

the profinite completion of π1(G). Let πét
1 (G) � πét

1 (G)′ and π̂1(G) � π̂1(G)′ be
identities if char(k) = 0, and the largest prime-to-p quotients if char(k) = p > 0.
Then Remark 5.6.ii implies that πét

1 (G)′ is canonically isomorphic to π̂1(G)′.
To verify this, one has to show, for every connected scheme X together with a

finite étale morphism π : X → G such that deg(π) is not divisible by char(k), that
there is a group structure on X such that π is an isogeny. This can be checked like
the analogous statement in topology, using the Künneth formula

πét
1 (G×G)′ = πét

1 (G)′ × πét
1 (G)′

proved in [9, Exp. XIII, Prop. 4.6] and [13, Prop. 4.7].
ii) Suppose char(k) = p > 0. Then each finite quotient of π1(G) which is a

p-group corresponds to a purely inseperable central isogeny G̃ � G. On the other
hand, the p-part of πét

1 (G) is huge and in particular non-abelian; cf. for example
[14]. Thus the p-parts of π̂1(G) and of πét

1 (G) don’t seem to be related.

Theorem 5.8. If the linear algebraic group G over k is smooth, connected, and
reductive, then one has a canonical bijection π0(MG) ∼= π1(G).

Proof. We partly follow [6, Proposition 5], where the connectedness of MG for
simply connected G is proved. Another reference is [11, Proposition 3.15].

Let BG ⊆ G be a Borel subgroup containing the maximal torus TG. Then
π0(MTG

) = π0(MBG
) by Proposition 5.1. The inclusion BG ↪→ G induces a map

(5.1) X∗(TG) = π0(MTG
) = π0(MBG

) −→ π0(MG).

This map is surjective, because every principal G-bundle on C admits a reduction
of its structure group to BG by [6, Theorem 1 and Remark 2.e].



ON MODULI STACKS OF G-BUNDLES OVER A CURVE 7

We claim that this map (5.1) is constant on cosets modulo Xcoroots. Given a
coroot α ∈ X∗(TG) of G and a cocharacter δ ∈ X∗(TG), it suffices to show that
δ and δ + α have the same image in π0(MG). As the inclusion TG ↪→ G factors
through the subgroup of semisimple rank one Gα ⊆ G given by α, we may assume
without loss of generality that G has semisimple rank one. Splitting off any direct
factor Gm of G reduces us to the cases G ∼= SL2, G ∼= GL2, or G ∼= PGL2.

To deal with these three cases, we choose a closed point P ∈ C(k). Let L and
L′ be invertible sheaves on C; in the case G ∼= SL2, we assume L ⊗ L′ ∼= OC(P ).
For every line ` in the two-dimensional vector space LP ⊕ L′P , its inverse image
subsheaf E` ⊆ L ⊕ L′ defines a G-bundle on C; thus we obtain a P1-family of
G-bundles on C. This family connects the two G-bundles defined by L(−P ) ⊕ L′
and by L ⊕ L′(−P ), which come from the maximal torus TG ⊆ G. Thus we see
that the elements δ and δ + α of X∗(TG) = π0(MTG

) indeed have the same image
in π0(MG). Hence the above map (5.1) descends to a surjective map

(5.2) π1(G) = X∗(TG)/Xcoroots −→ π0(MG).

Note that this map does not depend on the choice of the maximal torus TG ⊆ G.
Thus it is functorial in G, in the sense that the diagram

π1(G) //

ϕ∗

��

π0(MG)

ϕ∗

��
π1(H) // π0(MH)

commutes for every homomorphism ϕ : G → H of smooth, connected, reductive
algebraic groups.

Finally, we have to show that this canonical map (5.2) is injective. We first
consider the case where the commutator subgroup [G,G] ⊆ G is simply connected.
Then π1(G) = π1(G/[G,G]), so the required injectivity forG follows by functoriality
from the already verified injectivity for the torus G/[G,G].

Next we consider the case where G is semisimple, so π1(G) is finite. Let µ be
the kernel of the universal covering G̃ � G. We choose an embedding µ ↪→ T into
a torus T , and denote by Ĝ the pushout of linear algebraic groups

µ //

��

G̃

��
T // Ĝ.

By construction, Ĝ is smooth, connected, reductive, and [Ĝ, Ĝ] = G̃ is simply
connected. Moreover, we have an exact sequence

1 −→ T −→ Ĝ −→ G −→ 1.

Using Proposition 5.3, the injectivity for G follows from the injectivity for Ĝ, which
has already been proved in the previous case.

Finally, we consider the case where G is reductive. If π : G � H is a central
isogeny, then the induced map π1(G) → π1(H) is injective; hence we may replace
G by H without loss of generality. We take H := G/[G,G]×G/ZG, where ZG ⊆ G
is the center. Splitting off the torus G/[G,G] reduces us to the case where G is of
adjoint type. This is covered by the previous case. �
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cohomologie des schémas, Advanced Studies Pure Math. 3, 88-188, 1968.

[9] A. Grothendieck et al. SGA 1: Revêtements étales et groupe fondamental. Lecture Notes in
Mathematics, Vol. 224. Springer-Verlag, Berlin, 1971.
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Grenzgebiete. 3. Folge, Band 39. Berlin: Springer, 2000.

[13] F. Orgogozo. Altérations et groupe fondamental premier à p. Bull. Soc. Math. Fr., 131(1):123–
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