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ABSTRACT. Let X be a geometrically connected smooth projective curve of genus gx > 2
over R. Let M(r, &) be the coarse moduli space of geometrically stable vector bundles
E over X of rank r and determinant £, where £ is a real point of the Picard variety
@d(X). If gx = r =2, then let d be odd. We compute the Brauer group of M(r,¢).

1. INTRODUCTION

Let X¢ be a connected smooth projective curve of genus gx > 2 over C. Fix integers
r > 2 and d. Given a line bundle {c of degree d over X¢, we denote by M(r,&c) the
coarse moduli space of stable vector bundles over X¢ of rank r and determinant &¢.

The Picard group of such moduli spaces has been studied intensively; see for example
[DN, KN, LS, So, BLS, Fa, Te, BHol]. We view the Brauer group as a natural higher
order analogue of the Picard group. It is related to the classical rationality problem [CS].

We assume that d is odd if gx = r = 2; otherwise d is arbitrary. The Brauer group of
M (r,&c) has been computed in [BBGN]; the result is a canonical isomorphism

Br(M(r,éc)) = Z/ged(r, d).

The corresponding generator f¢c € Br(M(r,&c)) can be viewed as the obstruction against
the existence of a Poincaré bundle, or universal vector bundle, over M (r,{c) x Xc.

Now suppose X¢c = X ®g C for a smooth projective curve X over R. Then some of
the above moduli spaces carry interesting real algebraic structures, and there has been a
growing interest in understanding these structures [BhB, BHH, BHu, Sch]. In this note,
we compute the Brauer group of such real algebraic moduli spaces.

More precisely, assume that the line bundle &¢ comes from a real point £ of the Picard
variety Pic*(X). Let M(r, &) be the coarse moduli space of geometrically stable vector
bundles E over X of rank r and determinant &. It is a smooth quasiprojective variety over
R, with M(r,&) ®r C = M(r,&c); see Section 2. Our main result, Theorem 3.3, describes
the Brauer group of M (r,§) as follows.
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Theorem 1.1. With x :=r(1 — gx) + d, there is a canonical isomorphism

Z/ged(r,x) ®Z)2 if & comes from a line bundle defined over R,

Br(M(r,&)) = {Z/gcd(QT, X) otherwise.

Note that ged(r, x) = ged(r, d). The groups Z/ged(r, x) and Z/ged(2r, x) are generated
by a canonical class 8 € Br(M(r,§)), the obstruction against a Poincaré bundle over
M (r,&) x X. The order of this obstruction class 3 is computed in Proposition 3.2. The
remaining direct summand Z/2 comes from the Brauer group of R.
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Universitat Berlin with support from the SFB 647: Space - Time - Matter. The second
and the fourth author were supported by the same SFB 647.

2. MODULI OF VECTOR BUNDLES OVER A REAL CURVE

Let X be a geometrically connected smooth projective algebraic curve of genus gx > 2
defined over R. We will denote the base change from R to C by a subscript C. In
particular, X¢ := X ®g C is the associated algebraic curve over C.

Let 0 : C — C denote the complex conjugation. The involutive morphism of schemes
ox :=idy ® o : X¢ — X¢
lies over 0 : C — C. The closed points of X¢ fixed by ox are the real points of X.

Let £ be a real point of the Picard variety Pic(X). Viewing the associated complex
point & of Pic(X¢) as a line bundle over X¢, we have ¢ = % (&c).

A real (respectively, quaternionic) structure on ¢ is by definition an isomorphism

n: & — ox(&c)
of line bundles over X¢ with o%n on = idg, (respectively, o%n on = —idg.). The line
bundle &¢ admits either a real structure ) or a quaternionic structure 7, and in both cases

the resulting pair ({c,n) is uniquely determined up to an isomorphism; cf. for example
[Ve, Proposition 2.5] or [BHH, Proposition 3.1].

The real point & of Pic(X) is called quaternionic if {c admits a quaternionic structure.
Otherwise, ¢ admits a real structure, so we can view £ as a real line bundle over X.

A vector bundle E over X is called geometrically stable if the vector bundle E¢ over

Xc is stable. Not every stable vector bundle F over X is geometrically stable, but it is
always geometrically polystable. Fix integers r > 2 and d. We denote by

(1) M(r,d) D M(r,d)° — M(r,d)

the moduli stack of vector bundles F over X of rank r and degree d, the open substack of
geometrically stable F/, and their coarse moduli scheme, respectively. Since geometrically
stable E have only scalar automorphisms, M(r, d)® is a gerbe with band G,, over M(r, d).

Let L(det) denote the determinant of cohomology line bundle over M(r,d). Its fiber
over the moduli point of a vector bundle E is by definition det H*(E) ® det ' H'(E).
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All three moduli spaces or stacks in (1) come with a determinant map to the Picard
variety Pic?(X). Given a real point ¢ of Pic?(X), we denote by

M(r, ) D M(r, §)* — M(r,¢)

the corresponding fibers over £. So M(r, &) is a smooth quasiprojective variety over R,
whose base change M (r,&)c is the moduli space of stable vector over X¢ of rank r and
determinant {c. By restriction, M(r,£)® is a gerbe with band G, over M(r,§).

Suppose for the moment that ¢ is a real line bundle. Then we can define a line bundle
L(&) over M(r, €) whose fiber over the moduli point of a vector bundle E is Hom(§, det E).
To state this more precisely, let S be a scheme over R. Then the pullback of £(£) along
the classifying morphism S — M(r, &) of a vector bundle £ over X x S is by definition
the line bundle pr, , (prié~' @det £) over S. This defines a line bundle £(€) over M(r,§).

Now suppose that & is quaternionic. Then the same recipe defines a line bundle over
M(r,&)c endowed with a quaternionic structure. We denote this pair again by £(§).

In both cases, L£(&) gives us a line bundle £(&)¢ over M(r, {)c. If we trivialize the fiber
of &c over one closed point xy € X¢, we can identify £(§)c with the line bundle whose
fiber at the moduli point of a vector bundle E¢ over X¢ is the fiber of det E¢ over x.

Proposition 2.1. The Picard group Pic(M(r,§)) is generated

i) by L(det) and L(), if £ is a real line bundle.
ii) by L(det) and L(&)®?, if £ is quaternionic.

The restrictions of these line bundles also generate Pic(M(r,§)?).

Proof. Let /W(r, &c) denote the moduli stack of vector bundles E of rank r over X¢
together with an isomorphism &¢ = det E/. The forgetful map

T M(r,&c) — M(r,€)¢
is the Gy,-torsor given by the line bundle L£(§)c. It is easy to check that the kernel of
7 ¢ Pic(M(r, €)¢) — Pic(M(r, &)
is generated by L(&)¢; cf. the proof of [BL, Lemma 7.8]. The Picard group of /\7(7“, &)

is generated by 7*(L(det)c), according to [BL, Remark 7.11 and Proposition 9.2].

This shows that Pic(M(r,{)c) is generated by L(det)c and L£(£)c. We have just seen
that all these line bundles admit a real or quaternionic structure. This real or quater-
nionic structure is unique, since I'(M(r,§)c, O*) = C*. It follows that Pic(M(r,§)) is
the subgroup of line bundles in Pic(M(r,§)c) which are real, not quaternionic. Hence
Pic(M(r,&)) is generated by the line bundles as claimed.

As M(r,€) is smooth, the restriction map Pic(M(r,§)) — Pic(M(r,£)?) is surjective;
cf. for example [BHo2, Lemma 7.3]. So these line bundles also generate Pic(M(r,§£)®). O

Now let M — M be a gerbe with band G, over an irreducible Noetherian scheme
M. As a basic example, we have the gerbe M(r,d)* — M (r,d) in mind.
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Definition 2.2. Let £ be a line bundle over M. Then the automorphism groups G,, in
M act on the fibers of L. These G,, act by the same power w € Z on every fiber of L,
since M is connected. The integer w is called the weight of L.

The weight of a quaternionic line bundle £ is by definition the weight of the associated
complex line bundle L¢. For example, the real or quaternionic line bundle £(£) over
M(r,€)* has weight r. The real line bundle £(det) over M(r, d)* has weight

x:=r(l—gx)+d

according to Riemann-Roch. Consider the integers
X' = x/ged(r, x) and 7 :=r/ged(r, x).
The real or quaternionic line bundle
L(O) := L(det)®™ @ L(£)®X

over M(r,£)* has weight 0. Hence it descends to a real or quaternionic line bundle over
M (r, &), which we again denote by £(©). The line bundle £(O)¢ is ample on M(r,§)c,
and it generates the Picard group Pic(M(r,{)c) according to [DN, Théoremes A & B.

Proposition 2.3. The Picard group Pic(M(r,§)) is generated

i) by L(O), if & is a real line bundle or ' is even.
i) by L(©)®2, if & is quaternionic and X' is odd.

Proof. The line bundles over M(r,&) are the line bundles of weight 0 over M(r,&)*.
According to Proposition 2.1, these are of the form L£(det)®* @ L£(£)®® with ay + br = 0,
where moreover b has to be even if £ is quaternionic. 0

3. THE BRAUER GROUP

The Brauer group Br(S) of a Noetherian scheme S is by definition the abelian group of
Azumaya algebras over S up to Morita equivalence. It is a torsion group, and it embeds
canonically into the étale cohomology group HZ (S, Gy,).

If S is smooth and quasiprojective over a field, then HZ, (S, G,,) is also a torsion group
[Gr, Proposition 1.4], and the embedding of Br(S) into HZ, (S, G,,) is an isomorphism [dJ].

Our aim is to compute the Brauer group of the real moduli space M(r, ). Let
(2) B € Hg (M(r,€), ) = Br(M(r,€))

denote the class given by the gerbe M(r,£)* — M(r,£) with band G,,. Since a section
of this gerbe would yield a Poincaré bundle over M (r,£) x X, we can view the class (3 as
the obstruction against the existence of such a Poincaré bundle.

Remark 3.1. Choose an effective divisor D C X defined over R, for example a closed point
in X. The Brauer class § over M(r,£) can also be described by the Azumaya algebra
with fibers End H°(D, E|p), or by the projective bundle with fibers PH’(D, E|p).
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We first compute the exponent of 3, i.e., the order of § as an element in the torsion
group Br(M (r,€)). This will in particular reprove results of [BHu, Section 5].

Proposition 3.2. Let & be a real point of the Picard variety Pic?(X).

i) If € is a real line bundle, then 3 € Br(M(r,£)) has exponent ged(r, x).
ii) If £ is quaternionic, then 3 € Br(M(r,§)) has exponent ged(2r, x).

Proof. An integer n € Z annihilates the class 8 € HZ, (M (r,€), Gy,) of the gerbe M(r, £)®
if and only if there is a line bundle £ over M(r,£)® which has weight n; see for example
[Ho, Lemma 4.9]. Hence the claim follows from Proposition 2.1. U

We denote by Z - 8 C Br(M(r,§)) the subgroup generated by the class § in (2). Let
(3) [ M(r, &) — Spec(R)
be the structure morphism. Recall that Br(R) = Z/2, the nontrivial element being the
class [H] € Br(R) of the quaternion algebra H=R®R-i dR-j DR - k.
Theorem 3.3. Let & be a real point of Pic’(X), with d odd if gx = r = 2. We have
Z-0@ f*(Br(R)) = Z/ged(r,x) ®Z/2 if & is a real line bundle,
Z- 3 = Z/ged(2r, ) if € is quaternionic.

Br(M(r,€)) = {

Proof. The structure morphism f in (3) yields a Leray spectral sequence
(4) B! = Hg (R, R f,Gy) = HET (M (7,€), Gy).
We have R!f.G,, = Pic(M(r,¢)¢c) = Z. The action of Gal(C/R) = Z/2 on it is trivial,
for example because it preserves ampleness. From this we deduce
E," = H} (R, Z) = Hom(Z/2,Z) = 0.
Hence the spectral sequence (4) provides in particular an exact sequence
Ha(M(r,€),Gn) — Ey' — B3 — HE(M(r,€), Gp) — Ey”.
Using f.Gy = Gy, and R?*f,.G,,, = Br(M(r,€)c), we thus obtain an exact sequence

Pic(M(r, €)) <= Pie(M(r,€)e) — Br(R) <5 Br(M(r,€)) <> Br(M(r, €)c)

where ¢! and ¢? are pullback maps along the projection g : M(r,&)c — M(r,£). Note
that g is surjective, since g?(3) = ¢ generates Br(M(r,&)c) by [BBGN].

Suppose that ¢ is a real line bundle. Then ¢! is surjective due to Proposition 2.3, so f*
is injective. Since (8 has the same exponent as its image (B¢ by Proposition 3.2, it follows
that Br(M (r,§)) is the direct sum of its subgroups Z - 8 and f*(Br(R)), as required.

*

Now suppose that ¢ is quaternionic and that x' = x/ged(r, x) is even. Then f* is
injective as before, but the exponent ged(2r, x) of /3 is twice the exponent ged(r, x) of its
image (¢c. Hence ged(r, x) - 8 = f*([H]), and the class ( generates Br(M(r,£)).

Finally, suppose that £ is quaternionic and that y’ is odd. Then the cokernel of g has
two elements according to Proposition 2.3, so f* is the zero map, and g¢? is an isomorphism.
In particular, the class 3 again generates Br(M (r,&)). O
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