
THE BRAUER GROUP OF MODULI SPACES OF VECTOR BUNDLES
OVER A REAL CURVE

INDRANIL BISWAS, NORBERT HOFFMANN, AMIT HOGADI,
AND ALEXANDER H. W. SCHMITT

Abstract. LetX be a geometrically connected smooth projective curve of genus gX ≥ 2
over R. Let M(r, ξ) be the coarse moduli space of geometrically stable vector bundles
E over X of rank r and determinant ξ, where ξ is a real point of the Picard variety
Picd(X). If gX = r = 2, then let d be odd. We compute the Brauer group of M(r, ξ).

1. Introduction

Let XC be a connected smooth projective curve of genus gX ≥ 2 over C. Fix integers
r ≥ 2 and d. Given a line bundle ξC of degree d over XC, we denote by M(r, ξC) the
coarse moduli space of stable vector bundles over XC of rank r and determinant ξC.

The Picard group of such moduli spaces has been studied intensively; see for example
[DN, KN, LS, So, BLS, Fa, Te, BHo1]. We view the Brauer group as a natural higher
order analogue of the Picard group. It is related to the classical rationality problem [CS].

We assume that d is odd if gX = r = 2; otherwise d is arbitrary. The Brauer group of
M(r, ξC) has been computed in [BBGN]; the result is a canonical isomorphism

Br(M(r, ξC)) ∼= Z/gcd(r, d).

The corresponding generator βC ∈ Br(M(r, ξC)) can be viewed as the obstruction against
the existence of a Poincaré bundle, or universal vector bundle, over M(r, ξC)×XC.

Now suppose XC = X ⊗R C for a smooth projective curve X over R. Then some of
the above moduli spaces carry interesting real algebraic structures, and there has been a
growing interest in understanding these structures [BhB, BHH, BHu, Sch]. In this note,
we compute the Brauer group of such real algebraic moduli spaces.

More precisely, assume that the line bundle ξC comes from a real point ξ of the Picard
variety Picd(X). Let M(r, ξ) be the coarse moduli space of geometrically stable vector
bundles E over X of rank r and determinant ξ. It is a smooth quasiprojective variety over
R, with M(r, ξ)⊗R C ∼= M(r, ξC); see Section 2. Our main result, Theorem 3.3, describes
the Brauer group of M(r, ξ) as follows.
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Theorem 1.1. With χ := r(1− gX) + d, there is a canonical isomorphism

Br(M(r, ξ)) ∼=

{
Z/gcd(r, χ)⊕ Z/2 if ξ comes from a line bundle defined over R,
Z/gcd(2r, χ) otherwise.

Note that gcd(r, χ) = gcd(r, d). The groups Z/gcd(r, χ) and Z/gcd(2r, χ) are generated
by a canonical class β ∈ Br(M(r, ξ)), the obstruction against a Poincaré bundle over
M(r, ξ) ×X. The order of this obstruction class β is computed in Proposition 3.2. The
remaining direct summand Z/2 comes from the Brauer group of R.

Acknowledgements. Part of this work was done while the first author was visiting Freie
Universität Berlin with support from the SFB 647: Space - Time - Matter. The second
and the fourth author were supported by the same SFB 647.

2. Moduli of vector bundles over a real curve

Let X be a geometrically connected smooth projective algebraic curve of genus gX ≥ 2
defined over R. We will denote the base change from R to C by a subscript C. In
particular, XC := X ⊗R C is the associated algebraic curve over C.

Let σ : C −→ C denote the complex conjugation. The involutive morphism of schemes

σX := idX ⊗ σ : XC −→ XC

lies over σ : C −→ C. The closed points of XC fixed by σX are the real points of X.

Let ξ be a real point of the Picard variety Pic(X). Viewing the associated complex
point ξC of Pic(XC) as a line bundle over XC, we have ξC ∼= σ∗X(ξC).

A real (respectively, quaternionic) structure on ξC is by definition an isomorphism

η : ξC −→ σ∗X(ξC)

of line bundles over XC with σ∗Xη ◦ η = idξC (respectively, σ∗Xη ◦ η = −idξC). The line
bundle ξC admits either a real structure η or a quaternionic structure η, and in both cases
the resulting pair (ξC, η) is uniquely determined up to an isomorphism; cf. for example
[Ve, Proposition 2.5] or [BHH, Proposition 3.1].

The real point ξ of Pic(X) is called quaternionic if ξC admits a quaternionic structure.
Otherwise, ξC admits a real structure, so we can view ξ as a real line bundle over X.

A vector bundle E over X is called geometrically stable if the vector bundle EC over
XC is stable. Not every stable vector bundle E over X is geometrically stable, but it is
always geometrically polystable. Fix integers r ≥ 2 and d. We denote by

(1) M(r, d) ⊃M(r, d)s −→M(r, d)

the moduli stack of vector bundles E over X of rank r and degree d, the open substack of
geometrically stable E, and their coarse moduli scheme, respectively. Since geometrically
stable E have only scalar automorphisms,M(r, d)s is a gerbe with band Gm over M(r, d).

Let L(det) denote the determinant of cohomology line bundle over M(r, d). Its fiber
over the moduli point of a vector bundle E is by definition det H0(E)⊗ det−1 H1(E).
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All three moduli spaces or stacks in (1) come with a determinant map to the Picard
variety Picd(X). Given a real point ξ of Picd(X), we denote by

M(r, ξ) ⊃M(r, ξ)s −→M(r, ξ)

the corresponding fibers over ξ. So M(r, ξ) is a smooth quasiprojective variety over R,
whose base change M(r, ξ)C is the moduli space of stable vector over XC of rank r and
determinant ξC. By restriction, M(r, ξ)s is a gerbe with band Gm over M(r, ξ).

Suppose for the moment that ξ is a real line bundle. Then we can define a line bundle
L(ξ) overM(r, ξ) whose fiber over the moduli point of a vector bundle E is Hom(ξ, detE).
To state this more precisely, let S be a scheme over R. Then the pullback of L(ξ) along
the classifying morphism S −→M(r, ξ) of a vector bundle E over X × S is by definition
the line bundle pr2,∗(pr∗1ξ

−1⊗det E) over S. This defines a line bundle L(ξ) overM(r, ξ).

Now suppose that ξ is quaternionic. Then the same recipe defines a line bundle over
M(r, ξ)C endowed with a quaternionic structure. We denote this pair again by L(ξ).

In both cases, L(ξ) gives us a line bundle L(ξ)C overM(r, ξ)C. If we trivialize the fiber
of ξC over one closed point x0 ∈ XC, we can identify L(ξ)C with the line bundle whose
fiber at the moduli point of a vector bundle EC over XC is the fiber of detEC over x0.

Proposition 2.1. The Picard group Pic(M(r, ξ)) is generated

i) by L(det) and L(ξ), if ξ is a real line bundle.
ii) by L(det) and L(ξ)⊗2, if ξ is quaternionic.

The restrictions of these line bundles also generate Pic(M(r, ξ)s).

Proof. Let M̃(r, ξC) denote the moduli stack of vector bundles E of rank r over XC
together with an isomorphism ξC ∼= detE. The forgetful map

π : M̃(r, ξC) −→M(r, ξ)C

is the Gm-torsor given by the line bundle L(ξ)C. It is easy to check that the kernel of

π∗ : Pic(M(r, ξ)C) −→ Pic(M̃(r, ξC))

is generated by L(ξ)C; cf. the proof of [BL, Lemma 7.8]. The Picard group of M̃(r, ξC)
is generated by π∗(L(det)C), according to [BL, Remark 7.11 and Proposition 9.2].

This shows that Pic(M(r, ξ)C) is generated by L(det)C and L(ξ)C. We have just seen
that all these line bundles admit a real or quaternionic structure. This real or quater-
nionic structure is unique, since Γ(M(r, ξ)C,O∗) = C∗. It follows that Pic(M(r, ξ)) is
the subgroup of line bundles in Pic(M(r, ξ)C) which are real, not quaternionic. Hence
Pic(M(r, ξ)) is generated by the line bundles as claimed.

AsM(r, ξ) is smooth, the restriction map Pic(M(r, ξ)) −→ Pic(M(r, ξ)s) is surjective;
cf. for example [BHo2, Lemma 7.3]. So these line bundles also generate Pic(M(r, ξ)s). �

Now let M −→ M be a gerbe with band Gm over an irreducible Noetherian scheme
M . As a basic example, we have the gerbe M(r, d)s −→M(r, d) in mind.
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Definition 2.2. Let L be a line bundle over M. Then the automorphism groups Gm in
M act on the fibers of L. These Gm act by the same power w ∈ Z on every fiber of L,
since M is connected. The integer w is called the weight of L.

The weight of a quaternionic line bundle L is by definition the weight of the associated
complex line bundle LC. For example, the real or quaternionic line bundle L(ξ) over
M(r, ξ)s has weight r. The real line bundle L(det) over M(r, d)s has weight

χ := r(1− gX) + d

according to Riemann-Roch. Consider the integers

χ′ := χ/gcd(r, χ) and r′ := r/gcd(r, χ).

The real or quaternionic line bundle

L(Θ) := L(det)⊗−r
′ ⊗ L(ξ)⊗χ

′

over M(r, ξ)s has weight 0. Hence it descends to a real or quaternionic line bundle over
M(r, ξ), which we again denote by L(Θ). The line bundle L(Θ)C is ample on M(r, ξ)C,
and it generates the Picard group Pic(M(r, ξ)C) according to [DN, Théorèmes A & B].

Proposition 2.3. The Picard group Pic(M(r, ξ)) is generated

i) by L(Θ), if ξ is a real line bundle or χ′ is even.
ii) by L(Θ)⊗2, if ξ is quaternionic and χ′ is odd.

Proof. The line bundles over M(r, ξ) are the line bundles of weight 0 over M(r, ξ)s.
According to Proposition 2.1, these are of the form L(det)⊗a ⊗ L(ξ)⊗b with aχ+ br = 0,
where moreover b has to be even if ξ is quaternionic. �

3. The Brauer group

The Brauer group Br(S) of a Noetherian scheme S is by definition the abelian group of
Azumaya algebras over S up to Morita equivalence. It is a torsion group, and it embeds
canonically into the étale cohomology group H2

ét(S,Gm).

If S is smooth and quasiprojective over a field, then H2
ét(S,Gm) is also a torsion group

[Gr, Proposition 1.4], and the embedding of Br(S) into H2
ét(S,Gm) is an isomorphism [dJ].

Our aim is to compute the Brauer group of the real moduli space M(r, ξ). Let

(2) β ∈ H2
ét(M(r, ξ),Gm) = Br(M(r, ξ))

denote the class given by the gerbe M(r, ξ)s −→ M(r, ξ) with band Gm. Since a section
of this gerbe would yield a Poincaré bundle over M(r, ξ)×X, we can view the class β as
the obstruction against the existence of such a Poincaré bundle.

Remark 3.1. Choose an effective divisor D ⊂ X defined over R, for example a closed point
in X. The Brauer class β over M(r, ξ) can also be described by the Azumaya algebra
with fibers End H0(D,E|D), or by the projective bundle with fibers P H0(D,E|D).
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We first compute the exponent of β, i.e., the order of β as an element in the torsion
group Br(M(r, ξ)). This will in particular reprove results of [BHu, Section 5].

Proposition 3.2. Let ξ be a real point of the Picard variety Picd(X).

i) If ξ is a real line bundle, then β ∈ Br(M(r, ξ)) has exponent gcd(r, χ).
ii) If ξ is quaternionic, then β ∈ Br(M(r, ξ)) has exponent gcd(2r, χ).

Proof. An integer n ∈ Z annihilates the class β ∈ H2
ét(M(r, ξ),Gm) of the gerbe M(r, ξ)s

if and only if there is a line bundle L over M(r, ξ)s which has weight n; see for example
[Ho, Lemma 4.9]. Hence the claim follows from Proposition 2.1. �

We denote by Z · β ⊆ Br(M(r, ξ)) the subgroup generated by the class β in (2). Let

(3) f : M(r, ξ) −→ Spec(R)

be the structure morphism. Recall that Br(R) ∼= Z/2, the nontrivial element being the
class [H] ∈ Br(R) of the quaternion algebra H = R⊕ R · i⊕ R · j ⊕ R · k.

Theorem 3.3. Let ξ be a real point of Picd(X), with d odd if gX = r = 2. We have

Br(M(r, ξ)) =

{
Z · β ⊕ f ∗(Br(R)) ∼= Z/gcd(r, χ)⊕ Z/2 if ξ is a real line bundle,

Z · β ∼= Z/gcd(2r, χ) if ξ is quaternionic.

Proof. The structure morphism f in (3) yields a Leray spectral sequence

(4) Ep,q
2 = Hp

ét(R,R
qf∗Gm)⇒ Hp+q

ét (M(r, ξ),Gm).

We have R1f∗Gm = Pic(M(r, ξ)C) ∼= Z. The action of Gal(C/R) = Z/2 on it is trivial,
for example because it preserves ampleness. From this we deduce

E1,1
2 = H1

ét(R,Z) = Hom(Z/2,Z) = 0.

Hence the spectral sequence (4) provides in particular an exact sequence

H1
ét(M(r, ξ),Gm) −→ E0,1

2 −→ E2,0
2 −→ H2

ét(M(r, ξ),Gm) −→ E0,2
2 .

Using f∗Gm = Gm and R2f∗Gm = Br(M(r, ξ)C), we thus obtain an exact sequence

Pic(M(r, ξ))
g1−→ Pic(M(r, ξ)C) −→ Br(R)

f∗−→ Br(M(r, ξ))
g2−→ Br(M(r, ξ)C)

where g1 and g2 are pullback maps along the projection g : M(r, ξ)C −→ M(r, ξ). Note
that g2 is surjective, since g2(β) = βC generates Br(M(r, ξ)C) by [BBGN].

Suppose that ξ is a real line bundle. Then g1 is surjective due to Proposition 2.3, so f ∗

is injective. Since β has the same exponent as its image βC by Proposition 3.2, it follows
that Br(M(r, ξ)) is the direct sum of its subgroups Z · β and f ∗(Br(R)), as required.

Now suppose that ξ is quaternionic and that χ′ = χ/gcd(r, χ) is even. Then f ∗ is
injective as before, but the exponent gcd(2r, χ) of β is twice the exponent gcd(r, χ) of its
image βC. Hence gcd(r, χ) · β = f ∗([H]), and the class β generates Br(M(r, ξ)).

Finally, suppose that ξ is quaternionic and that χ′ is odd. Then the cokernel of g1 has
two elements according to Proposition 2.3, so f ∗ is the zero map, and g2 is an isomorphism.
In particular, the class β again generates Br(M(r, ξ)). �
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