THE BRAUER GROUP OF MODULI SPACES OF VECTOR BUNDLES OVER A REAL CURVE

INDRANIL BISWAS, NORBERT HOFFMANN, AMIT HOGADI, AND ALEXANDER H. W. SCHMITT

ABSTRACT. Let X be a geometrically connected smooth projective curve of genus $g_X \ge 2$ over \mathbb{R} . Let $M(r,\xi)$ be the coarse moduli space of geometrically stable vector bundles E over X of rank r and determinant ξ , where ξ is a real point of the Picard variety $\underline{\operatorname{Pic}}^d(X)$. If $g_X = r = 2$, then let d be odd. We compute the Brauer group of $M(r,\xi)$.

1. INTRODUCTION

Let $X_{\mathbb{C}}$ be a connected smooth projective curve of genus $g_X \geq 2$ over \mathbb{C} . Fix integers $r \geq 2$ and d. Given a line bundle $\xi_{\mathbb{C}}$ of degree d over $X_{\mathbb{C}}$, we denote by $M(r,\xi_{\mathbb{C}})$ the coarse moduli space of stable vector bundles over $X_{\mathbb{C}}$ of rank r and determinant $\xi_{\mathbb{C}}$.

The Picard group of such moduli spaces has been studied intensively; see for example [DN, KN, LS, So, BLS, Fa, Te, BHo1]. We view the Brauer group as a natural higher order analogue of the Picard group. It is related to the classical rationality problem [CS].

We assume that d is odd if $g_X = r = 2$; otherwise d is arbitrary. The Brauer group of $M(r, \xi_{\mathbb{C}})$ has been computed in [BBGN]; the result is a canonical isomorphism

$$\operatorname{Br}(M(r,\xi_{\mathbb{C}})) \cong \mathbb{Z}/\operatorname{gcd}(r,d).$$

The corresponding generator $\beta_{\mathbb{C}} \in Br(M(r,\xi_{\mathbb{C}}))$ can be viewed as the obstruction against the existence of a Poincaré bundle, or universal vector bundle, over $M(r,\xi_{\mathbb{C}}) \times X_{\mathbb{C}}$.

Now suppose $X_{\mathbb{C}} = X \otimes_{\mathbb{R}} \mathbb{C}$ for a smooth projective curve X over \mathbb{R} . Then some of the above moduli spaces carry interesting real algebraic structures, and there has been a growing interest in understanding these structures [BhB, BHH, BHu, Sch]. In this note, we compute the Brauer group of such real algebraic moduli spaces.

More precisely, assume that the line bundle $\xi_{\mathbb{C}}$ comes from a real point ξ of the Picard variety $\underline{\operatorname{Pic}}^d(X)$. Let $M(r,\xi)$ be the coarse moduli space of geometrically stable vector bundles E over X of rank r and determinant ξ . It is a smooth quasiprojective variety over \mathbb{R} , with $M(r,\xi) \otimes_{\mathbb{R}} \mathbb{C} \cong M(r,\xi_{\mathbb{C}})$; see Section 2. Our main result, Theorem 3.3, describes the Brauer group of $M(r,\xi)$ as follows.

²⁰⁰⁰ Mathematics Subject Classification. 14F22, 14D20, 14P99.

Key words and phrases. Brauer group, moduli space, real algebraic curve.

Theorem 1.1. With $\chi := r(1 - g_X) + d$, there is a canonical isomorphism

$$\operatorname{Br}(M(r,\xi)) \cong \begin{cases} \mathbb{Z}/\operatorname{gcd}(r,\chi) \oplus \mathbb{Z}/2 & \text{if } \xi \text{ comes from a line bundle defined over } \mathbb{R}, \\ \mathbb{Z}/\operatorname{gcd}(2r,\chi) & \text{otherwise.} \end{cases}$$

Note that $gcd(r, \chi) = gcd(r, d)$. The groups $\mathbb{Z}/gcd(r, \chi)$ and $\mathbb{Z}/gcd(2r, \chi)$ are generated by a canonical class $\beta \in Br(M(r,\xi))$, the obstruction against a Poincaré bundle over $M(r,\xi) \times X$. The order of this obstruction class β is computed in Proposition 3.2. The remaining direct summand $\mathbb{Z}/2$ comes from the Brauer group of \mathbb{R} .

Acknowledgements. Part of this work was done while the first author was visiting Freie Universität Berlin with support from the SFB 647: Space - Time - Matter. The second and the fourth author were supported by the same SFB 647.

2. Moduli of vector bundles over a real curve

Let X be a geometrically connected smooth projective algebraic curve of genus $g_X \ge 2$ defined over \mathbb{R} . We will denote the base change from \mathbb{R} to \mathbb{C} by a subscript \mathbb{C} . In particular, $X_{\mathbb{C}} := X \otimes_{\mathbb{R}} \mathbb{C}$ is the associated algebraic curve over \mathbb{C} .

Let $\sigma: \mathbb{C} \longrightarrow \mathbb{C}$ denote the complex conjugation. The involutive morphism of schemes

$$\sigma_X := \mathrm{id}_X \otimes \sigma : X_{\mathbb{C}} \longrightarrow X_{\mathbb{C}}$$

lies over $\sigma : \mathbb{C} \longrightarrow \mathbb{C}$. The closed points of $X_{\mathbb{C}}$ fixed by σ_X are the real points of X.

Let ξ be a real point of the Picard variety $\underline{\text{Pic}}(X)$. Viewing the associated complex point $\xi_{\mathbb{C}}$ of $\underline{\text{Pic}}(X_{\mathbb{C}})$ as a line bundle over $X_{\mathbb{C}}$, we have $\xi_{\mathbb{C}} \cong \sigma_X^*(\xi_{\mathbb{C}})$.

A real (respectively, quaternionic) structure on $\xi_{\mathbb{C}}$ is by definition an isomorphism

$$\eta:\xi_{\mathbb{C}}\longrightarrow\sigma_X^*(\xi_{\mathbb{C}})$$

of line bundles over $X_{\mathbb{C}}$ with $\sigma_X^* \eta \circ \eta = \mathrm{id}_{\xi_{\mathbb{C}}}$ (respectively, $\sigma_X^* \eta \circ \eta = -\mathrm{id}_{\xi_{\mathbb{C}}}$). The line bundle $\xi_{\mathbb{C}}$ admits either a real structure η or a quaternionic structure η , and in both cases the resulting pair ($\xi_{\mathbb{C}}, \eta$) is uniquely determined up to an isomorphism; cf. for example [Ve, Proposition 2.5] or [BHH, Proposition 3.1].

The real point ξ of $\underline{\text{Pic}}(X)$ is called *quaternionic* if $\xi_{\mathbb{C}}$ admits a quaternionic structure. Otherwise, $\xi_{\mathbb{C}}$ admits a real structure, so we can view ξ as a real line bundle over X.

A vector bundle E over X is called *geometrically stable* if the vector bundle $E_{\mathbb{C}}$ over $X_{\mathbb{C}}$ is stable. Not every stable vector bundle E over X is geometrically stable, but it is always geometrically polystable. Fix integers $r \geq 2$ and d. We denote by

(1)
$$\mathcal{M}(r,d) \supset \mathcal{M}(r,d)^s \longrightarrow M(r,d)$$

the moduli stack of vector bundles E over X of rank r and degree d, the open substack of geometrically stable E, and their coarse moduli scheme, respectively. Since geometrically stable E have only scalar automorphisms, $\mathcal{M}(r, d)^s$ is a gerbe with band \mathbb{G}_m over M(r, d).

Let $\mathcal{L}(\det)$ denote the determinant of cohomology line bundle over $\mathcal{M}(r, d)$. Its fiber over the moduli point of a vector bundle E is by definition $\det H^0(E) \otimes \det^{-1} H^1(E)$. All three moduli spaces or stacks in (1) come with a determinant map to the Picard variety $\underline{\operatorname{Pic}}^{d}(X)$. Given a real point ξ of $\underline{\operatorname{Pic}}^{d}(X)$, we denote by

$$\mathcal{M}(r,\xi) \supset \mathcal{M}(r,\xi)^s \longrightarrow M(r,\xi)$$

the corresponding fibers over ξ . So $M(r,\xi)$ is a smooth quasiprojective variety over \mathbb{R} , whose base change $M(r,\xi)_{\mathbb{C}}$ is the moduli space of stable vector over $X_{\mathbb{C}}$ of rank r and determinant $\xi_{\mathbb{C}}$. By restriction, $\mathcal{M}(r,\xi)^s$ is a gerbe with band \mathbb{G}_m over $M(r,\xi)$.

Suppose for the moment that ξ is a real line bundle. Then we can define a line bundle $\mathcal{L}(\xi)$ over $\mathcal{M}(r,\xi)$ whose fiber over the moduli point of a vector bundle E is $\operatorname{Hom}(\xi, \det E)$. To state this more precisely, let S be a scheme over \mathbb{R} . Then the pullback of $\mathcal{L}(\xi)$ along the classifying morphism $S \longrightarrow \mathcal{M}(r,\xi)$ of a vector bundle \mathcal{E} over $X \times S$ is by definition the line bundle $\operatorname{pr}_{2*}(\operatorname{pr}_1^*\xi^{-1} \otimes \det \mathcal{E})$ over S. This defines a line bundle $\mathcal{L}(\xi)$ over $\mathcal{M}(r,\xi)$.

Now suppose that ξ is quaternionic. Then the same recipe defines a line bundle over $\mathcal{M}(r,\xi)_{\mathbb{C}}$ endowed with a quaternionic structure. We denote this pair again by $\mathcal{L}(\xi)$.

In both cases, $\mathcal{L}(\xi)$ gives us a line bundle $\mathcal{L}(\xi)_{\mathbb{C}}$ over $\mathcal{M}(r,\xi)_{\mathbb{C}}$. If we trivialize the fiber of $\xi_{\mathbb{C}}$ over one closed point $x_0 \in X_{\mathbb{C}}$, we can identify $\mathcal{L}(\xi)_{\mathbb{C}}$ with the line bundle whose fiber at the moduli point of a vector bundle $E_{\mathbb{C}}$ over $X_{\mathbb{C}}$ is the fiber of det $E_{\mathbb{C}}$ over x_0 .

Proposition 2.1. The Picard group $Pic(\mathcal{M}(r,\xi))$ is generated

- i) by $\mathcal{L}(\det)$ and $\mathcal{L}(\xi)$, if ξ is a real line bundle.
- ii) by $\mathcal{L}(\det)$ and $\mathcal{L}(\xi)^{\otimes 2}$, if ξ is quaternionic.

The restrictions of these line bundles also generate $\operatorname{Pic}(\mathcal{M}(r,\xi)^s)$.

Proof. Let $\mathcal{M}(r,\xi_{\mathbb{C}})$ denote the moduli stack of vector bundles E of rank r over $X_{\mathbb{C}}$ together with an isomorphism $\xi_{\mathbb{C}} \cong \det E$. The forgetful map

 $\pi: \widetilde{\mathcal{M}}(r,\xi_{\mathbb{C}}) \longrightarrow \mathcal{M}(r,\xi)_{\mathbb{C}}$

is the \mathbb{G}_{m} -torsor given by the line bundle $\mathcal{L}(\xi)_{\mathbb{C}}$. It is easy to check that the kernel of

$$\pi^* : \operatorname{Pic}(\mathcal{M}(r,\xi)_{\mathbb{C}}) \longrightarrow \operatorname{Pic}(\mathcal{M}(r,\xi_{\mathbb{C}}))$$

is generated by $\mathcal{L}(\xi)_{\mathbb{C}}$; cf. the proof of [BL, Lemma 7.8]. The Picard group of $\mathcal{M}(r,\xi_{\mathbb{C}})$ is generated by $\pi^*(\mathcal{L}(\det)_{\mathbb{C}})$, according to [BL, Remark 7.11 and Proposition 9.2].

This shows that $\operatorname{Pic}(\mathcal{M}(r,\xi)_{\mathbb{C}})$ is generated by $\mathcal{L}(\det)_{\mathbb{C}}$ and $\mathcal{L}(\xi)_{\mathbb{C}}$. We have just seen that all these line bundles admit a real or quaternionic structure. This real or quaternionic structure is unique, since $\Gamma(\mathcal{M}(r,\xi)_{\mathbb{C}},\mathcal{O}^*) = \mathbb{C}^*$. It follows that $\operatorname{Pic}(\mathcal{M}(r,\xi))$ is the subgroup of line bundles in $\operatorname{Pic}(\mathcal{M}(r,\xi)_{\mathbb{C}})$ which are real, not quaternionic. Hence $\operatorname{Pic}(\mathcal{M}(r,\xi))$ is generated by the line bundles as claimed.

As $\mathcal{M}(r,\xi)$ is smooth, the restriction map $\operatorname{Pic}(\mathcal{M}(r,\xi)) \longrightarrow \operatorname{Pic}(\mathcal{M}(r,\xi)^s)$ is surjective; cf. for example [BHo2, Lemma 7.3]. So these line bundles also generate $\operatorname{Pic}(\mathcal{M}(r,\xi)^s)$. \Box

Now let $\mathcal{M} \longrightarrow M$ be a gerbe with band \mathbb{G}_m over an irreducible Noetherian scheme M. As a basic example, we have the gerbe $\mathcal{M}(r, d)^s \longrightarrow M(r, d)$ in mind.

Definition 2.2. Let \mathcal{L} be a line bundle over \mathcal{M} . Then the automorphism groups \mathbb{G}_m in \mathcal{M} act on the fibers of \mathcal{L} . These \mathbb{G}_m act by the same power $w \in \mathbb{Z}$ on every fiber of \mathcal{L} , since \mathcal{M} is connected. The integer w is called the *weight* of \mathcal{L} .

The weight of a quaternionic line bundle \mathcal{L} is by definition the weight of the associated complex line bundle $\mathcal{L}_{\mathbb{C}}$. For example, the real or quaternionic line bundle $\mathcal{L}(\xi)$ over $\mathcal{M}(r,\xi)^s$ has weight r. The real line bundle $\mathcal{L}(\det)$ over $\mathcal{M}(r,d)^s$ has weight

$$\chi := r(1 - g_X) + d$$

according to Riemann-Roch. Consider the integers

$$\chi' := \chi/\operatorname{gcd}(r,\chi)$$
 and $r' := r/\operatorname{gcd}(r,\chi).$

The real or quaternionic line bundle

$$\mathcal{L}(\Theta) := \mathcal{L}(\det)^{\otimes -r'} \otimes \mathcal{L}(\xi)^{\otimes \chi'}$$

over $\mathcal{M}(r,\xi)^s$ has weight 0. Hence it descends to a real or quaternionic line bundle over $M(r,\xi)$, which we again denote by $\mathcal{L}(\Theta)$. The line bundle $\mathcal{L}(\Theta)_{\mathbb{C}}$ is ample on $M(r,\xi)_{\mathbb{C}}$, and it generates the Picard group $\operatorname{Pic}(M(r,\xi)_{\mathbb{C}})$ according to [DN, Théorèmes A & B].

Proposition 2.3. The Picard group $Pic(M(r,\xi))$ is generated

- i) by $\mathcal{L}(\Theta)$, if ξ is a real line bundle or χ' is even.
- ii) by $\mathcal{L}(\Theta)^{\otimes 2}$, if ξ is quaternionic and χ' is odd.

Proof. The line bundles over $M(r,\xi)$ are the line bundles of weight 0 over $\mathcal{M}(r,\xi)^s$. According to Proposition 2.1, these are of the form $\mathcal{L}(\det)^{\otimes a} \otimes \mathcal{L}(\xi)^{\otimes b}$ with $a\chi + br = 0$, where moreover b has to be even if ξ is quaternionic.

3. The Brauer group

The Brauer group Br(S) of a Noetherian scheme S is by definition the abelian group of Azumaya algebras over S up to Morita equivalence. It is a torsion group, and it embeds canonically into the étale cohomology group $H^2_{\text{ét}}(S, \mathbb{G}_m)$.

If S is smooth and quasiprojective over a field, then $H^2_{\text{ét}}(S, \mathbb{G}_m)$ is also a torsion group [Gr, Proposition 1.4], and the embedding of Br(S) into $H^2_{\text{ét}}(S, \mathbb{G}_m)$ is an isomorphism [dJ].

Our aim is to compute the Brauer group of the real moduli space $M(r,\xi)$. Let

(2)
$$\beta \in \mathrm{H}^{2}_{\mathrm{\acute{e}t}}(M(r,\xi), \mathbb{G}_{\mathrm{m}}) = \mathrm{Br}(M(r,\xi))$$

denote the class given by the gerbe $\mathcal{M}(r,\xi)^s \longrightarrow M(r,\xi)$ with band \mathbb{G}_m . Since a section of this gerbe would yield a Poincaré bundle over $M(r,\xi) \times X$, we can view the class β as the obstruction against the existence of such a Poincaré bundle.

Remark 3.1. Choose an effective divisor $D \subset X$ defined over \mathbb{R} , for example a closed point in X. The Brauer class β over $M(r,\xi)$ can also be described by the Azumaya algebra with fibers End $\mathrm{H}^0(D, E|_D)$, or by the projective bundle with fibers $\mathbb{P} \mathrm{H}^0(D, E|_D)$. We first compute the exponent of β , i.e., the order of β as an element in the torsion group Br $(M(r,\xi))$. This will in particular reprove results of [BHu, Section 5].

Proposition 3.2. Let ξ be a real point of the Picard variety $\underline{\operatorname{Pic}}^d(X)$.

- i) If ξ is a real line bundle, then $\beta \in Br(M(r,\xi))$ has exponent $gcd(r,\chi)$.
- ii) If ξ is quaternionic, then $\beta \in Br(M(r,\xi))$ has exponent $gcd(2r,\chi)$.

Proof. An integer $n \in \mathbb{Z}$ annihilates the class $\beta \in \mathrm{H}^{2}_{\mathrm{\acute{e}t}}(M(r,\xi), \mathbb{G}_{\mathrm{m}})$ of the gerbe $\mathcal{M}(r,\xi)^{s}$ if and only if there is a line bundle \mathcal{L} over $\mathcal{M}(r,\xi)^{s}$ which has weight n; see for example [Ho, Lemma 4.9]. Hence the claim follows from Proposition 2.1.

We denote by $\mathbb{Z} \cdot \beta \subseteq Br(M(r,\xi))$ the subgroup generated by the class β in (2). Let

(3)
$$f: M(r,\xi) \longrightarrow \operatorname{Spec}(\mathbb{R})$$

be the structure morphism. Recall that $\operatorname{Br}(\mathbb{R}) \cong \mathbb{Z}/2$, the nontrivial element being the class $[\mathbb{H}] \in \operatorname{Br}(\mathbb{R})$ of the quaternion algebra $\mathbb{H} = \mathbb{R} \oplus \mathbb{R} \cdot i \oplus \mathbb{R} \cdot j \oplus \mathbb{R} \cdot k$.

Theorem 3.3. Let ξ be a real point of $\underline{\text{Pic}}^d(X)$, with d odd if $g_X = r = 2$. We have

$$\operatorname{Br}(M(r,\xi)) = \begin{cases} \mathbb{Z} \cdot \beta \oplus f^*(\operatorname{Br}(\mathbb{R})) \cong \mathbb{Z}/\operatorname{gcd}(r,\chi) \oplus \mathbb{Z}/2 & \text{if } \xi \text{ is a real line bundle,} \\ \mathbb{Z} \cdot \beta \cong \mathbb{Z}/\operatorname{gcd}(2r,\chi) & \text{if } \xi \text{ is quaternionic.} \end{cases}$$

Proof. The structure morphism f in (3) yields a Leray spectral sequence

(4)
$$E_2^{p,q} = \mathrm{H}^p_{\mathrm{\acute{e}t}}(\mathbb{R}, \mathrm{R}^q f_* \mathbb{G}_{\mathrm{m}}) \Rightarrow \mathrm{H}^{p+q}_{\mathrm{\acute{e}t}}(M(r,\xi), \mathbb{G}_{\mathrm{m}}).$$

We have $\mathbb{R}^1 f_* \mathbb{G}_m = \operatorname{Pic}(M(r,\xi)_{\mathbb{C}}) \cong \mathbb{Z}$. The action of $\operatorname{Gal}(\mathbb{C}/\mathbb{R}) = \mathbb{Z}/2$ on it is trivial, for example because it preserves ampleness. From this we deduce

$$E_2^{1,1} = \mathrm{H}^1_{\mathrm{\acute{e}t}}(\mathbb{R},\mathbb{Z}) = \mathrm{Hom}(\mathbb{Z}/2,\mathbb{Z}) = 0$$

Hence the spectral sequence (4) provides in particular an exact sequence

$$\mathrm{H}^{1}_{\mathrm{\acute{e}t}}(M(r,\xi),\mathbb{G}_{\mathrm{m}})\longrightarrow E^{0,1}_{2}\longrightarrow E^{2,0}_{2}\longrightarrow \mathrm{H}^{2}_{\mathrm{\acute{e}t}}(M(r,\xi),\mathbb{G}_{\mathrm{m}})\longrightarrow E^{0,2}_{2}.$$

Using $f_*\mathbb{G}_m = \mathbb{G}_m$ and $\mathbb{R}^2 f_*\mathbb{G}_m = \operatorname{Br}(M(r,\xi)_{\mathbb{C}})$, we thus obtain an exact sequence

$$\operatorname{Pic}(M(r,\xi)) \xrightarrow{g^1} \operatorname{Pic}(M(r,\xi)_{\mathbb{C}}) \longrightarrow \operatorname{Br}(\mathbb{R}) \xrightarrow{f^*} \operatorname{Br}(M(r,\xi)) \xrightarrow{g^2} \operatorname{Br}(M(r,\xi)_{\mathbb{C}})$$

where g^1 and g^2 are pullback maps along the projection $g: M(r,\xi)_{\mathbb{C}} \longrightarrow M(r,\xi)$. Note that g^2 is surjective, since $g^2(\beta) = \beta_{\mathbb{C}}$ generates $\operatorname{Br}(M(r,\xi)_{\mathbb{C}})$ by [BBGN].

Suppose that ξ is a real line bundle. Then g^1 is surjective due to Proposition 2.3, so f^* is injective. Since β has the same exponent as its image $\beta_{\mathbb{C}}$ by Proposition 3.2, it follows that $\operatorname{Br}(M(r,\xi))$ is the direct sum of its subgroups $\mathbb{Z} \cdot \beta$ and $f^*(\operatorname{Br}(\mathbb{R}))$, as required.

Now suppose that ξ is quaternionic and that $\chi' = \chi/\operatorname{gcd}(r,\chi)$ is even. Then f^* is injective as before, but the exponent $\operatorname{gcd}(2r,\chi)$ of β is twice the exponent $\operatorname{gcd}(r,\chi)$ of its image $\beta_{\mathbb{C}}$. Hence $\operatorname{gcd}(r,\chi) \cdot \beta = f^*([\mathbb{H}])$, and the class β generates $\operatorname{Br}(M(r,\xi))$.

Finally, suppose that ξ is quaternionic and that χ' is odd. Then the cokernel of g^1 has two elements according to Proposition 2.3, so f^* is the zero map, and g^2 is an isomorphism. In particular, the class β again generates $Br(M(r,\xi))$.

References

- [BBGN] V. Balaji, I. Biswas, O. Gabber and D. S. Nagaraj, Brauer obstruction for a universal vector bundle, Comp. Rend. Math. Acad. Sci. Paris 345 (2007), 265–268.
- [BL] A. Beauville and Y. Laszlo, Conformal blocks and generalized theta functions. Commun. Math. Phys. 164 (1994), 385–419.
- [BLS] A. Beauville, Y. Laszlo and C. Sorger, The Picard group of the moduli of *G*-bundles on a curve, *Compositio Math.* **112** (1998), 183–216.
- [BhB] U. N. Bhosle and I. Biswas, Stable real algebraic vector bundles over a Klein bottle. Trans. Am. Math. Soc. 360 (2008), 4569–4595.
- [BH01] I. Biswas and N. Hoffmann, The line bundles on moduli stacks of principal bundles on a curve, Documenta Math. 15 (2010), 35–72.
- [BHo2] I. Biswas and N. Hoffmann, Poincaré families of *G*-bundles on a curve, preprint arXiv:1001.2123, available at www.arXiv.org, to appear in *Math. Ann.*
- [BHH] I. Biswas, J. Huisman and J. Hurtubise, The moduli space of stable vector bundles over a real algebraic curve, *Math. Ann.* **347** (2010), 201–233.
- [BHu] I. Biswas and J. Hurtubise, Universal vector bundle over the reals, preprint arXiv:0909.0041, available at www.arXiv.org, to appear in *Trans. Am. Math. Soc.*
- [CS] J.-L. Colliot-Thélène and J.-J. Sansuc, The rationality problem for fields of invariants under linear algebraic groups (with special regards to the Brauer group), In: V. Mehta, editor, Algebraic groups and homogeneous spaces (Mumbai 2004), pages 113–186, 2007.
- [dJ] A. de Jong: A result of Gabber. preprint, http://www.math.columbia.edu/~dejong/
- [DN] J.-M. Drezet and M. S. Narasimhan, Groupe de Picard des variétés de modules de fibrés semistables sur les courbes algébriques, *Invent. Math.* **97** (1989), 53–94.
- [Fa] G. Faltings, Algebraic loop groups and moduli spaces of bundles, J. Eur. Math. Soc. (JEMS) 5 (2003), 41–68.
- [Gr] A. Grothendieck, Le groupe de Brauer II: Théorie cohomologique, Dix Exposés sur la Cohomologie des Schémas, 67–87. North-Holland, Amsterdam, 1968.
- [Ho] N. Hoffmann, Rationality and Poincaré families for vector bundles with extra structure on a curve, *Int. Math. Res. Not.*, Article ID rnm010 (2007), 30 p.
- [KN] S. Kumar and M. S. Narasimhan, Picard group of the moduli spaces of G-bundles, Math. Ann. 308 (1997), 155–173.
- [LS] Y. Laszlo and C. Sorger, The line bundles on the moduli of parabolic *G*-bundles over curves and their sections, *Ann. Sci. École Norm. Sup.* (4) **30** (1997), 499–525.
- [Sch] F. Schaffhauser, Moduli varieties of real and quaternionic vector bundles over a curve, preprint arXiv:1003.5285, available at www.arXiv.org
- [So] C. Sorger, On moduli of G-bundles of a curve for exceptional G, Ann. Sci. École Norm. Sup. (4) 32 (1999), 127–133.
- [Te] C. Teleman, Borel-Weil-Bott theory on the moduli stack of G-bundles over a curve, Invent. Math. 134 (1998), 1–57.
- [Ve] J.-L. Verdier, Instantons. Les équations de Yang-Mills, Séminaire E.N.S. 1977-1978, 105–134. Astérisque 71–72, Société Mathématique de France, Paris, 1980.

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India

E-mail address: indranil@math.tifr.res.in

INSTITUT FÜR MATHEMATIK DER FREIEN UNIVERSITÄT, ARNIMALLEE 3, 14195 BERLIN, GERMANY *E-mail address*: norbert.hoffmann@fu-berlin.de

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India

E-mail address: amit@math.tifr.res.in

INSTITUT FÜR MATHEMATIK DER FREIEN UNIVERSITÄT, ARNIMALLEE 3, 14195 BERLIN, GERMANY *E-mail address*: alexander.schmitt@fu-berlin.de