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Abstract

This thesis studies stability concepts in Algebraic Geometry. The notion of

stability comes from Geometric Invariant Theory, introduced by D. Mumford,

in order to construct moduli spaces. More recently, the space of stability

conditions on a derived category was introduced by T. Bridgeland. In this

thesis, we outline preliminaries such as complex manifolds, divisors and line

bundles, sheaf theory and category theory. We then study the stability of

vector bundles on curves of small genus and give an overview of Bridgeland

stability conditions. We conclude by examining stability conditions on the

category of coherent systems and the category of holomorphic triples in this

framework.

i



Acknowledgements

I would like to sincerely thank my supervisor, Bernd Kreussler, for his in-

valuable advice and approachability. Thanks also to the Mathematics De-

partment for their encouragement and support along the way. I would also

like to thank my parents, family, friends and John for their constant support

and love.

ii



Introduction

Algebraic geometry has developed tremendously over the last century. Dur-

ing the 19th century, the subject was practiced on a relatively concrete level.

However, towards the end of that century, much advancement was made in

this discipline, especially by Italian geometers. Then in the 1950’s, Serre

introduced sheaf theory. The foundations of Algebraic Geometry have been

brought to modern standards by work of E. Noether, A. Weil, O. Zariski and

others. In the 1960s, A. Grothendieck introduced the currently used lan-

guage of schemes and many fundamental ideas, which are now established as

standard concepts.

Moduli spaces, introduced by B. Riemann, form a major tool of modern

algebraic geometry. Stability concepts of geometric objects play a crucial role

in the construction and study of moduli spaces. Stability concepts emerged

from Geometric Invariant Theory, which is used to construct moduli spaces.

These concepts were originally introduced by Mumford, Maruyama and oth-

ers. More recently, inspired by ideas from theoretical physics namely string

theory, T. Bridgeland introduced a generalisation of the notion of stability

to derived categories. The resulting moduli space of Bridgeland’s stability

conditions is an interesting and new invariant. As this construction is rela-

tively new, only a few examples are studied so far, see for example the works

of T. Bridgeland, D. Arcara, E. Macri, S. Okada and others.

This thesis focuses on a very small, yet relevant, part of this vast and

rapily evolving subject area. Firstly, it aims to provide an overview of some

existing stability concepts in different contexts of algebraic geometry. To this

end, in the first three chapters we need to introduce notions such as complex

manifolds, sheaves, categories and vector bundles.

The paper is organised as follows. In Chapter 1, we outline the necessary

background and preliminaries required for subsequent chapters. We begin

with a brief review of complex manifolds and then go on to describe divisors

and line bundles on a complex manifold. We also give a brief exposition of

sheaf theory, followed by category theory. This is the language we use for
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the rest of the thesis.

Chapter 2 is devoted to the stability of vector bundles on curves. The

first section outlines basic definitions and theorems. We will then study

vector bundles on P1. From here, we go on to study Atiyah’s classification

of indecomposable rank two vector bundles over an elliptic curve. The final

section introduces the notion of stability of vector bundles.

We give an overview of Bridgeland stability concepts following his exposi-

tion in [Br01] in Chapter 3. This concludes the foundational material needed

for the following two chapters. In Chapter 4 we study coherent systems on

a Riemann surface in an attempt to place the stability of coherent systems

into the framework of Bridgeland stability conditions. We discover that, in

fact, the category of coherent systems does not form an abelian category and

so we cannot go any further. This leads us to study holomorphic triples in

the final chapter. We check again if the stability of triples can be placed into

the framework of Bridgeland stability conditions. Here, we make some inter-

esting conclusions, although many open questions still remain. Throughout

this thesis we work over C, the field the complex numbers.
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Chapter 1

Preliminaries

1.1 Complex manifolds

Throughout this thesis we work over complex manifolds. Complex manifolds

are topological spaces that locally look like Cn. They are close relatives of

differentiable manifolds, but very different in many aspects. In this section,

knowledge of differentiable manifolds is assumed. Let us now look at the

precise definition of a complex manifold.

Definition 1.1.1. An n-dimensional complex manifold, X, is a differentiable

manifold admitting an open cover {Ui} and coordinate maps ϕi : Ui → Cn

such that

ϕi ◦ ϕ
−1
j : ϕj(Ui ∩ Uj)→ ϕi(Ui ∩ Uj)

is holomorphic for all i, j.

Remark 1.1.2. We write ϕ−1
i : ϕi(Ui) → Ui ⊂ X for the inverse of ϕi on it’s

image ϕi(Ui).

Remark 1.1.3. Using the notation of Definition 1.1.1, denote by Vi := ϕi(Ui),

Vij := ϕi(Ui∩Uj), Vji := ϕj(Ui∩Uj) ⊂ Cn. Define ϕi ◦ϕ
−1
j =: ψij : Vji → Vij .

These are holomorphic and satisfy

ψij ◦ ψji = id on Vij
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and

ψij ◦ ψjk ◦ ψki = id on Vij ∩ Vik.

We call these maps, the change of coordinate maps of X.

A function, f , on an open set U ⊂ X is holomorphic if, for all i, f ◦ ϕ−1
i

is holomorphic on ϕi(U ∩ Ui) ⊂ Cn.

Definition 1.1.4. A complex manifold is called connected, compact etc. if

the underlying differentiable (or topological) manifold has this property. A

complex manifold of dimension one is called a Riemann surface.

Let us now look at some examples of complex manifolds.

Example 1.1.5. The simplest example of a one dimensional complex man-

ifold is just C itself. The affine space is another example, which is just

the algebraic name for the most basic complex manifold provided by the n-

dimensional complex space Cn. Any complex vector space of finite dimension

is also a complex manifold.

Example 1.1.6. The complex projective space Pn := Pn
C

is an example of

a compact complex manifold. By definition, Pn is the set of equivalence

classes of (n+ 1)-tuples (a0, . . . , an) of elements of C, not all zero, under the

equivalence relation given by (a0, . . . , an) ∼ (λa0, . . . , λan) for all λ ∈ C∗.

Another way of saying this is that Pn as a set is the quotient of the set

C
n+1\{(0, . . . , 0)} under the equivalence relation which identifies points lying

on the same line through the origin.

An element of P
n (i.e. an equivalence class of (n + 1)-tuples of elements

of C) is called a point and written as (z0 : z1 : . . . : zn). The standard open

covering of Pn is given by n+ 1 open subsets

Ui := {(z0 : . . . : zn)|zi 6= 0} ⊂ P
n.

If Pn is endowed with the quotient topology via

π : C
n+1\{0} → (Cn+1\{0})/C∗ = P

n,
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then the Ui’s are indeed open. The structure of a complex manifold on this

set is given by the following: On the open subset Ui ⊂ Pn, there are bijective

maps

ϕi : Ui → C
n, (z0 : . . . : zn) 7→

(

z0
zi
, · · · ,

zi−1

zi
,
zi+1

zi
, · · · ,

zn
zi

)

.

On {wi 6= 0} = ϕj(Ui ∩ Uj) ⊂ Cn, the change of coordinate maps ψij :=

ϕi ◦ ϕ
−1
j : ϕj(Ui ∩ Uj)→ ϕi(Ui ∩ Uj), are holomorphic. They are given by

ψij(w1, . . . , wn) =

(

w1

wi+1
, . . . ,

wi
wi+1

,
wi+2

wi+1
, . . . ,

wj
wi+1

,
1

wi+1
,
wj+1

wi+1
, . . . ,

wn
wi+1

)

,

if i < j and

ψij(w1, . . . , wn) =

(

w1

wi
, . . . ,

wj
wi
,

1

wi
,
wj+1

wi
, . . . ,

wi−1

wi
,
wi+1

wi
, . . .

wn
wi

)

,

if i > j. Thus Pn has the structure of a complex manifold.

Example 1.1.7. Let X be the quotient Cn/Z2n, where Z2n ⊂ R2n = Cn

is the natural inclusion. Then X has the structure of a complex manifold

induced by the projection map π : Cn → Cn/Z2n. This complex manifold is

called a complex torus.

Let us consider the one-dimensional case, i.e. X = C/Λ, where Λ =

Z2 = {n1w1 + n2w2|ni ∈ Z, wi ∈ C} is a rank two lattice in C. Since

R/Z is diffeomorphic to S1 via the exponential map r 7→ exp(2πir), where

r ∈ R,C/Λ is diffeomorphic to S1×S1. This one dimensional complex torus

is also called an elliptic curve.

C/Λ
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Definition 1.1.8. Let X be an n-dimensional complex manifold and let

Y ⊂ X be a differentiable submanifold of real dimension 2k. Then Y is

a complex submanifold of X if there exists an open cover {Ui} of X and

coordinate maps ϕi : Ui → Cn of X such that ϕi(Ui ∩ Y ) ∼= ϕi(Ui) ∩Ck.

Here Ck is embedded into Cn via (z1, . . . , zk) 7→ (z1, . . . , zk, 0, . . . , 0).

Definition 1.1.9. A complex manifold X is projective if X is isomorphic to

a closed complex submanifold of some projective space PN .

Each compact Riemann surface can be embedded holomorphically into

some projective space PN . A compact Riemann surface S together with an

embedding i : S →֒ PN is known as an algebraic curve. In this paper, we

will often refer to a compact Riemann surface as a curve without necessarily

specifying the embedding in PN .

1.2 Divisors

There is an important notion in algebraic geometry which is that of a divisor.

In the case of a curve it has a simple description as follows:

Definition 1.2.1. Let C be a smooth projective curve. A divisor on C is

a formal linear combination D = a1P1 + · · ·+ amPm of points Pi ∈ C with

integer coefficients ai. Divisors can be added or subtracted and hence form

a group denoted Div(C).

Remark 1.2.2. This definition can also be extended to higher dimensional

manifolds. On a complex manifold, X, of dimension n, a divisor is a formal

linear combination of closed subvarieties of dimension n−1. A closed subva-

riety Y of dimension n− 1 in Y is a subset of X which can locally be given

as the zero locus of a single holomorphic function.

Definition 1.2.3. The degree of a divisor D = a1P1+ · · ·+amPm on a curve,

C, is defined to be degD =
∑m

i=1 ai and gives us a group homomorphism

deg : Div(C)→ Z.
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Let f be a holomorphic function on an open set U ⊂ C. Let P ∈ U and

let x be the local coordinate on U such that x(P ) = λ for some λ ∈ C. We

define the order of f at P , denoted ordPf to be the largest a ∈ Z such that

locally

f(x) = (x− λ)a · h(x) where h is a holomorphic function, h(λ) 6= 0.

Note that for g, h any holomorphic functions

ordPgh = ordPg + ordPh.

Now let f be a meromorphic function on C not identically zero, i.e. f can be

written locally as a ratio g

h
, where g and h are holomorphic functions which

do not have a common zero. We define

ordPf = ordP g − ordPh.

Given a global meromorphic function we can construct a divisor associated

to it.

Definition 1.2.4. Let f be a meromorphic function on C. Then the divisor

associated to f , called a principal divisor and denoted div(f) is

div(f) =
∑

P∈C

ordPf · P.

Example 1.2.5. Consider P1 with homogeneous coordinates (z0 : z1). Then

any ratio f = g

h
where g and h are homogeneous polynomials of degree

d defines a global meromorphic function. For example, if f = z0z1
z20−z

2
1

then

div(f) = P0 + P1 − P2 − P3 where P0 = (1 : 0), P1 = (0 : 1), P2 = (1 : 1) and

P3 = (1 : −1). Note that deg(div(f)) = 0.

1.2.1 Line bundles and divisors

We will now see how to relate divisors to holomorphic line bundles. From

now on X will denote a complex manifold, unless otherwise specified. We

begin with the definition of a line bundle.

5



Definition 1.2.6. A holomorphic line bundle is a holomorphic map p : L→

X of complex manifolds which satisfies the following conditions:

1. For any point x ∈ X, the preimage Lx := p−1(x) (called a fibre) has a

structure of a one-dimensional C-vector space.

2. The mapping p is locally trivial, i.e. for any point x ∈ X, there exists

an open neighbourhood Ui containing x and a biholomorphic map

ϕi : p−1(Ui)→ Ui × C such that the diagram

p−1(Ui)
ϕi //

p
##G

GG
GG

GG
GG

Ui × C

pr1
{{xx

xx
xxx

xx

Ui

commutes (where pr1 is projection to the first factor).

Moreover, ϕi takes the vector space Lx isomorphically onto {x} × C for

each x ∈ Ui; ϕi is called a trivialisation of L over Ui. Note that for any pair

of trivialisations ϕi and ϕj the map

gij : Ui ∩ Uj → GL(1,C) = C
∗

given by

gij(x) = ϕi ◦ (ϕj)
−1|{x}×C, i.e. ϕi(ϕ

−1
j (x, v)) = (x, gij(x)v)

is holomorphic; the maps gij are called transition functions for L relative to

the trivialisations ϕi, ϕj. The transition functions of L necessarily satisfy the

identities

gij(x) · gji(x) = 1 for all x ∈ Ui ∩ Uj (1.1)

gij(x) · gjk(x) · gki(x) = 1 for all x ∈ Ui ∩ Uj ∩ Uk. (1.2)

Conversely, given an open cover {Ui} of X and transition functions

gij : Ui ∩ Uj → GL(n,C), for all i, j, satisfying conditions (1.1) and (1.2)

outlined above, then we can define a line bundle, L, with transition func-

tions gij using the glueing construction as follows: We glue Ui × C together

by taking the union over all i of Ui × C to get L :=
⊔

(Ui × C)/ ∼, where

(x, v) ∼ (x, gij(x)(v)), for all x ∈ Ui ∩ Uj, v ∈ C.

6



Example 1.2.7. The trivial line bundle on X, i.e. pr1 : X ×C→ X will be

denoted by OX , (or simply O if it is clear which X we are referring to).

Remark 1.2.8. If we consider line bundles on P1, with coordinates z = (z0 :

z1) and with standard open cover {U0, U1} as outlined in Example 1.1.6, it is

enough to give the transition function g01 : U0 ∩ U1 → GL(1,C). From this

we can define g10 : U1 ∩ U0 → GL(1,C) as follows: g10(z) := g01(z)
−1 and

g00(z) = 1 and g11(z) = 1. The transition functions then clearly satisfy the

necessary conditions:

g01(z) · g10(z) = 1

gij(z) ◦ gjk(z) ◦ gki(z) = 1 for all i, j, k.

Example 1.2.9. Consider the line bundle on P1 given by the transition

function g01 =
zn
1

zn
0
. This line bundle is normally denoted O(n). Using this

convention we see that the trivial line bundle O can also be written as O(0).

Definition 1.2.10. Given two line bundles L1 and L2 on X (with open cover

{Ui}), with transition functions gij and hij respectively, then we can define

L1⊗L2, the tensor product of L1 and L2, to be the line bundle with transition

functions

fij(x) := gij(x) · hij(x) ∈ GL(1,C) ∀x ∈ Ui ∩ Uj

Example 1.2.11. Consider the line bundlesO(n) andO(m) on P1. Let g01 =
zn
1

zn
0

and h01 =
zm
1

zm
0

be transition functions for O(n) and O(m), respectively.

So we get the line bundle O(n)⊗O(m) given by transition functions f01 =

g01 · h01, i.e f01 =
zn+m
1

zn+m
0

and so we can clearly see that

O(n)⊗O(m) ∼= O(n +m).

Definition 1.2.12. If L is a line bundle on X with transition functions gij ,

and {Ui} is an open cover on X, then the dual bundle, L∗, of L is given by

transition functions

hij(x) := (gij(x))
−1 ∀x ∈ Ui ∩ Uj .

7



Example 1.2.13. Consider the line bundle O(n) on P1 (as described in

Example 1.2.9) with transition functions g01 =
zn
1

zn
0
. Then O(n)∗, the dual of

this, is the line bundle given by transition functions

h01(x) =
zn0
zn1

=
z−n1

z−n0

So we can see that O(n)∗ ∼= O(−n).

Remark 1.2.14. The set Pic(X) of isomorphism classes of line bundles over a

complex manifold X is a group, called the Picard group, with respect to the

operation of tensoring. The trivial line bundle is the neutral element. For

any line bundle L its dual bundle L∗ is the inverse, i.e. L⊗ L∗ ∼= O.

Definition 1.2.15. Let p : L→ X be a line bundle with transition functions

gij. A holomorphic section s of the line bundle p : L → X is a holomorphic

map s : X → L such that p ◦ s = id. This means that we have an open cover

{Ui} of X and a collection of holomorphic functions si : Ui → C such that

si(x) = gij(x)sj(x) ∀x ∈ Ui ∩ Uj .

Note that it may turn out that a line bundle does not have any holomor-

phic sections. We can consider meromorphic sections of L. A collection of

local meromorphic functions {si} on {Ui} such that si(x) = gij(x)sj(x) for

all x ∈ Ui ∩ Uj is called a meromorphic section of L.

We are now ready to give the correspondence between divisors and line

bundles. Let D =
∑

niPi be a divisor on a smooth projective curve, C. Let

{Ui} be an open cover of C. If z is a coordinate on Ui with z(Pj) = λj , then

fi(z) =
∏

Pj∈Ui

(z − λj)
nj

defines a meromorphic function on Ui with div(fi) = D|Ui
, the part of D

which is inside Ui. We say that D is locally defined by fi. Then the functions

gij =
fi
fj

8



are holomorphic and nonzero on Ui ∩ Uj because on Ui ∩ Uj , fi and fj have

the same poles and zeros of the same order. On Ui ∩ Uj ∩ Uk, we have

gij · gjk · gki =
fi
fj
·
fj
fk
·
fk
fi

= 1.

The line bundle given by the transition functions {gij = fi/fj} is called

the associated line bundle of D, denoted O(D). We check that it is well-

defined: if {f ′
i} are alternate local data for D, then hi = fi/f

′
i is a nonzero

holomorphic function on Ui and

g′ij =
f ′
i

f ′
j

= gij ·
hj
hi

for each i, j.

So now we can define a map

L : Div(C)→ Pic(C)

given by

D 7→ O(D)

The correspondence L has these immediate properties: First, if D and D′

are two divisors given by local data {fi} and{f ′
i}, respectively, then D +D′

is given by {fi · f ′
i}. Now O(D) is given by transition functions gij = fi/fj

and O(D′) is given by transition functions g′ij = f ′
i/f

′
j . So O(D+D′) is given

by transition functions gij · g′ij. Hence, by definition of the tensor product of

line bundles (Definition 1.2.10) it follows that

O(D +D′) ∼= O(D)⊗O(D′)

so the map

L : Div(C)→ Pic(C)

is a homomorphism.

Let us now show that L is surjective. Since C can be embedded in some

projective space PN , given a line bundle L on C, there exists a meromorphic

9



section s of L (this follows from [H] Theorem II.5.17). Consider a local

representation si of s. Then given any point P ∈ C we can define the order

of s at P as

ordP (s) = ordP (si)

for any i such that P ∈ Ui. Since si(x)
sj(x)

= gij(x) ∈ C∗ ∀x ∈ Ui ∩ Uj , this

does not depend on the choice of i and it follows that ordP (si) = ordP (sj) if

P ∈ Ui ∩ Uj. Hence ordP (s) is well-defined. We take the divisor, div(s) of s

to be

div(s) =
∑

P∈C

ordP s · P.

With this convention s is holomorphic if and only if div(s) is effective,

i.e. ordP (s) ≥ 0 for all P ∈ C. If we were to take the line bundle associated

to the divisor div(s) we would recover (up to isomorphism) our original line

bundle, L. In light of this, it is common to denote a line bundle by O(D).

The third property of L is that it’s kernel is exactly the principal divisors.

This is given by the following lemma:

Lemma 1.2.16. Let C be a smooth projective curve and let Div(C) denote

the group of divisors and Pic(C) denote the Picard group on C. Then O(D)

is trivial if and only if D = div(f) for some meromorphic function on C.

Proof. ([GH] Chapter 1, Section 1, Pg. 134) If D = div(f) for some mero-

morphic function f on C, we may take as local data forD over any cover {Ui}

the functions fi = f |Ui
; then fi/fj = 1 and so O(D) is trivial. Conversely, if

D is given by local data {fi} and the line bundle O(D) is trivial, then there

exists nonzero holomorphic functions hi on Ui, corresponding to a constant

section of the trivial line bundle, such that

fi
fj

= gij =
hi
hj

;

the function f = fi · h
−1
i = fj · h

−1
j is then a global meromorphic function on

C with divisor D.

10



Definition 1.2.17. We say that two divisors D,D′ on C are linearly equiv-

alent and write D ∼ D′ if D = D′ + div(f) for some f , a meromorphic

function on C or equivalently if O(D) ∼= O(D′).

It follows from Lemma 1.2.16 that if D is a principal divisor, O(D) ∼=

O(0), where O(0) is the trivial line bundle, then deg(D) = 0. We have

already seen (Definition 1.2.3) that

deg : Div(C)→ Z

is a homomorphism of groups. It is zero on principal divisors, and so it

factors through Pic(C) to give a homomorphism

deg : Pic(C)→ Z.

We can now give the following definition.

Definition 1.2.18. The degree of a line bundle O(D), denoted deg(O(D))

is the degree of the divisor D, i.e. deg(O(D)) = deg(D).

Remark 1.2.19. The process of constructing the map Div(C) → Pic(C) on

a smooth projective curve can also be carried out for divisors on higher

dimensional manifolds, though we do not go into the details here.

1.3 Sheaves

Sheaves are a powerful tool used to deduce global properties from local ones.

Jean Leray invented the theory of sheaves on topological spaces. However, it

was Serre who introduced sheaf theory into algebraic geometry. The theory

of sheaves play a large role in this thesis and this section seeks to outline the

main properties that we will need in later chapters.

Throughout this section we will work over complex manifolds. However,

all the definitions could also be made over a topological space, though we

do not need this level of generality for this thesis. When we refer to ‘rings’

in this section, we mean commutative rings with identity, unless otherwise

specified.
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Definition 1.3.1. Let X be a complex manifold. A presheaf, F , of abelian

groups consists of the following data:

• for every open subset U of X an abelian group F(U) and

• for every inclusion V ⊆ U of open sets in X a group homomorphism

ρU,V : F(U)→ F(V )

such that

(a) F(∅) = 0;

(b) ρU,U = idF(U), and

(c) for open sets W ⊆ V ⊆ U of X

ρU,W = ρV,W ◦ ρU,V .

The homomorphism ρU,V is called a restriction map and sometimes we

write s|V instead of ρU,V (s), if s ∈ F(U).

Furthermore, a presheaf F of abelian groups is called a sheaf of abelian

groups if it satisfies the following glueing property: if U ⊂ X is an open set,

{Ui} an open cover of U and si ∈ F(Ui) for all i such that si|Ui∩Uj
= sj|Ui∩Uj

for all i, j, then there is a unique s ∈ F(U) such that s|Ui
= si for all i.

We also write F(U) as Γ(U,F). An element of Γ(U,F) is said to be a

section of F over U .

Remark 1.3.2. We can also define a sheaf of vector spaces on X, where for

every open subset U ⊆ X, the F(U) are vector spaces and the restriction

maps are linear maps. Similarly we can define a sheaf of rings (i.e. commu-

tative rings with identity) on X, where for every open subset U ⊆ X, the

F(U) are rings and the restriction maps are ring homomorphisms.

Example 1.3.3. Let U be an open set in a complex manifold X, and let

CX(U) be the totality of real-valued continuous functions on U . Define, for

x ∈ U ,

(f + g)(x) = f(x) + g(x) and (fg)(x) = f(x)g(x), f, g ∈ CX(U).

12



Then CX(U) becomes a commutative ring with the identity being the con-

stant function 1. For open sets V ⊆ U , the restriction map ρU,V is the

restriction of the domain of a function, i.e. f 7→ f |V . Then CX is a sheaf of

rings over the complex manifold X.

Intuitively speaking, any set of “function-like” objects form a presheaf; it

is a sheaf if the conditions imposed on the “functions” are local.

Example 1.3.4. Let X = C be the complex plane. Let U ⊆ X, a non-

empty open subset of X and let F(U) be the ring of constant (complex-

valued) functions on U , i.e. F(U) ∼= C for all U . Let the restriction maps

ρU,V for all V ⊆ U be the restriction of the function on U to V . Then F

is a presheaf, but not a sheaf. This is because being constant is not a local

property. For example, let U = U1 ∪ U2, where U1 and U2 are open discs in

C and U1 ∩ U2 = ∅. Let f1 : U1 → C be the constant function 0, and let

f2 : U2 → C be the constant function 1. Then f1 and f2 trivially agree on

the overlap U1∩U2 = ∅, but there is no constant function on U that restricts

to both f1 and f2 on U1 and U2, respectively.

Example 1.3.5. Let X be a complex manifold, and U ⊆ X an open subset.

Let OX(U) be the totality of holomorphic functions on U . The restriction

map is the restriction of the domain of a function. Then as in Example 1.3.3,

OX becomes a sheaf of commutative rings over X. The sheaf OX is called

the structure sheaf on X.

Now, if OX is any sheaf of rings on a complex manifold X, we introduce

the notion of a sheaf of modules over OX as follows.

Definition 1.3.6. Let X be a complex manifold, and OX be a sheaf of rings

on X. A presheaf of abelian groups, F , is called a sheaf of OX-modules, if

for every open subset U ⊆ X, F(U) is equipped with the structure of an

OX(U)-module such that for every inclusion V ⊆ U , the restriction map

ρU,V : F(U)→ F(V ) is OX(U)-linear via the ring homomorphism OX(U)→

OX(V ).

13



Now, we know that it is important to study group homomorphisms be-

tween groups, ring homomorphisms between rings and so on. Thus, it is

natural now to study morphisms between sheaves, given by the following

definition.

Definition 1.3.7. Let X be a complex manifold. If F and G are (pre)sheaves

of abelian groups on X, a morphism ϕ : F → G consists of a collection of

homomorphisms ϕ(U) : F(U) → G(U) for each open set U ⊆ X, such that

whenever V ⊆ U is an inclusion, the diagram

F(U)

ρU,V

��

ϕ(U) // G(U)

ρ′
U,V

��
F(V )

ϕ(V ) // G(V )

is commutative, where ρ and ρ′ are the restriction maps in F and G, respec-

tively. A (pre)sheaf morphism of abelian groups ϕ : F → G is said to be an

isomorphism if for each open subset U ⊆ X, ϕ(U) is an isomorphism.

Remark 1.3.8. We also have the notion of a morphism of (pre)sheaves of

vector spaces (or rings), ϕ : F → G, on X which consists of a collection of

linear maps (or ring homomorphisms) ϕ(U) : F(U) → G(U) for each open

set U ⊆ X. Similarly, a morphism of sheaves of OX -modules ϕ : F → G

on X consists of a collection of homomorphisms of OX(U)-modules ϕ(U) :

F(U)→ G(U) for every open set U ⊆ X.

Once we have a morphism of ϕ : F → G of (pre)sheaves of abelian

groups we can construct the presheaf kernel, denoted ker(ϕ), the presheaf

image, denoted im′(ϕ), and the presheaf cokernel, denoted coker′(ϕ), which

are defined in the obvious way: e.g. coker′(ϕ)(U) = coker(ϕ(U) : F(U) →

G(U)). It is important to note here that if ϕ is a sheaf morphism, then ker(ϕ)

is itself a sheaf. However, im′(ϕ) and coker′(ϕ) are just presheaves. In order

to define the cokernel and image of a sheaf morphism as sheaves, we need to

introduce the notion of a stalk.
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Definition 1.3.9. Let F be a (pre)sheaf of abelian groups on X and x ∈ X.

The stalk of F at x is

Fx := {(U, s)|x ∈ U ⊂ X, s ∈ F(U)}/ ∼ .

Here, for two open subsets Ui, i = 1, 2 and sections si ∈ F(Ui), i = 1, 2, one

sets (U1, s1) ∼ (U2, s2) if there exists an open subset x ∈ U ⊂ U1 ∩ U2 such

that ρU1,U(s1) = ρU2,U(s2). The elements of Fx are called the germs of F .

One immediately finds that any section s ∈ F(U) induces an element

sx ∈ Fx for any point x ∈ U . Furthermore, any (pre)sheaf morphism ϕ :

F → G induces morphisms Fx → Gx for any x ∈ X.

Example 1.3.10. Consider the structure sheaf OX from Example 1.3.5

again. If x ∈ X, the stalk of OX at x, denoted OX,x, is the ring of germs of

holomorphic functions at x.

Definition 1.3.11. Let F ′ be a presheaf of abelian groups on a complex

manifold, X. The sheafification of F ′, or the sheaf associated to the presheaf

F ′, is defined to be the sheaf F for which F(U), of an open subset U ⊆ X,

is the set of all maps s : U →
⋃

x∈U F
′
x with s(x) ∈ F ′

x and such that for all

x ∈ U there exists an open subset x ∈ V ⊆ U and a section t ∈ F ′(V ) with

s(y) = ty for all y ∈ V .

With this definition, we show that F really is a sheaf. It is clear that F

is a presheaf. It remains to show that it satisfies the glueing property, i.e. if

U ⊂ X is an open subset of X, {Ui} is an open cover of U and si ∈ F(Ui)

for all i (where si : Ui →
⋃

x∈Ui
F ′
x) such that si|Ui∩Uj

= sj |Ui∩Uj
for all i, j,

we must show that there is a unique s ∈ F(U) such that s|Ui
= si for all i.

Now for all x ∈ U , define s(x) ∈ F ′
x to be si(x) if x ∈ Ui. If x ∈ Ui ∩ Uj ,

we know si(x) = sj(x) ∈ F ′
x so the definition is independent of the choice of

i. If x ∈ Ui, we have s(x) = si(x), i.e. s|Ui
= si. We must now show that

this s ∈ F(U) is unique, i.e. if s|Ui
= 0 for all i, then s = 0. If x ∈ U then

there exists an i with x ∈ Ui and s(x) = s|Ui
(x) = 0 by assumption. Hence

s = 0 and F is really a sheaf.
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Definition 1.3.12. A subsheaf of a sheaf of abelian groups, F , is a sheaf of

abelian groups F ′ such that for every open set U ⊆ X, F ′(U) is a subgroup

of F(U), and the restriction maps ρ′U,V : F ′(U)→ F ′(V ) of the sheaf F ′ are

induced by those of F , i.e. they are obtained by restricting ρU,V : F(U) →

F(V ) to F ′(U). It follows that for any point x, the stalk F ′
x is a subgroup

of Fx.

Remark 1.3.13. We also have the notion of a subsheaf of a sheaf of vector

spaces F . A subsheaf of F is a sheaf of vector spaces F ′ such that F ′(U) is

a subvector space of F(U). Similarly, we can define a subsheaf of a sheaf of

rings F as a sheaf of rings F ′ such that F ′(U) is a subring of F(U).

Using sheafification, we can now give the following definitions:

Definition 1.3.14. (a) If ϕ : F → G is a morphism of sheaves of abelian

groups, we define the cokernel of ϕ, denoted coker(ϕ), to be the sheaf asso-

ciated to the presheaf coker′(ϕ).

(b) The morphism ϕ is called a monomorphism if ker(ϕ) = 0.

(c) If ϕ : F → G is a morphism of sheaves of abelian groups, we define the

image of ϕ, denote im(ϕ), to be the sheaf associated to the presheaf im′(ϕ).

(d) The morphism ϕ is called an epimorphism if im(ϕ) = G.

(e) If the morphism ϕ is a monomorphism, its cokernel is denoted G/F

and called the quotient of G by F .

(f) We say that a sequence

. . . // F i−1
ϕi−1

// F i
ϕi

// F i+1 // . . .

of sheaves and morphisms is exact if at each stage ker(ϕi) = im(ϕi−1).

It can be shown that these definitions of the kernel and cokernel of a

morphism of sheaves satisfy the universal property which is used in category

theory (Definitions 1.4.7 and 1.4.8).

Remark 1.3.15. IfX is a complex manifold, a morphism ϕ : F → G of sheaves

is a monomorphism if and only if the map on sections ϕ(U) : F(U)→ G(U) is
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a monomorphism for each U ⊆ X, i.e. ker(ϕ) = 0 if and only if ker(ϕ(U)) = 0

for each U .

The corresponding statement for epimorphisms is not true: if ϕ : F → G

is an epimorphism, the maps ϕ(U) : F(U) → G(U) on sections need not be

epimorphisms. See Example 2.1.17 to illustrate this fact.

1.3.1 Coherent sheaves

It turns out that sheaves of modules are too general objects for many ap-

plications. Coherent sheaves are a special class of sheaves with particularly

manageable properties. Many results and properties in algebraic geometry

are formulated in terms of coherent sheaves and their cohomology.

Definition 1.3.16. Let X be a complex manifold. A sheaf of OX -modules,

F , is a coherent sheaf if and only if

(a) for each x ∈ X, there exists and open set U ⊆ X with x ∈ U and

there exist an integer n such that there exists an exact sequence of sheaves

on U

OnX |U → F|U → 0,

where OnX :=
⊕n

1 OX (In this case, we say F is a finitely generated OX -

module) and

(b) For any open set U ⊆ X and for any OX |U -module homomorphism

ϕ : OnX |U → F|U ,

ker(ϕ) is a finitely generated OX-module.

Example 1.3.17. By the Theorem of Oka, the structure sheaf OX on a

complex manifold, X, is a coherent sheaf.

The following is an example of a noncoherent sheaf.

Example 1.3.18. Let V be an infinite dimensional complex vector space

and let x ∈ X be a fixed point. Define

F(U) :=

{

V if x ∈ U

0 if x 6∈ U

17



The OX(U)-module structure is then given by the following: if x ∈ U , f ∈

OX(U) and v ∈ V = F(U), we define f · v := f(x) · v. Since F is not a

finitely generated OX -module, it is noncoherent.

Remark 1.3.19. If F and G are coherent sheaves of OX -modules and ϕ : F →

G a morphism of sheaves, then ker(ϕ), coker(ϕ), im(ϕ) are coherent sheaves

of OX -modules.

Definition 1.3.20. A sheaf F of OX -modules on a complex manifold X

is called locally free of rank r if it is locally isomorphic to the sheaf OrX :=
⊕r

1OX , i.e. if there exists an open cover {Ui}i∈I ofX such that F|Ui
∼= OrX |Ui

.

When r = 1, the sheaf is called invertible.

Definition 1.3.21. Let C be a smooth projective curve with structure sheaf

OC . If F is a sheaf of OC-modules, we define the torsion subsheaf, tors(F),

of F as follows: For any open subset U ⊆ C we let

tors(F)(U) := {s ∈ F(U)|∃f ∈ OC(U) such that f 6= 0 and f · s = 0}.

Briefly, tors(F)(U) is the torsion sub-module of the OC(U)-module, F(U).

The presheaf, tors(F), is actually a sheaf. A sheaf, F , is called torsion free

if tors(F) = 0 and it’s called a torsion sheaf if tors(F) = F .

Remark 1.3.22. We know from [OSS] Chapter II, 1.1, that a finitely generated

module over a regular local ring of dimension one is locally free if and only

if it is torsion free. Therefore, on a smooth curve C, a coherent sheaf F is

locally free if and only if tors(F) = 0.

In particular, for any coherent sheaf F , F/ tors(F) is locally free. If

F ′ ⊂ F is a subsheaf, we also have tors(F ′) ⊂ tors(F). In particular, if F is

torsion free then any subsheaf F ′ is torsion free.

1.3.2 Čech cohomology

All the definitions and formulations made in this subsection will be made on

a projective complex manifold. However, everything here can also be defined

on a general topological space.
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Motivation for cohomology

The main basis of the motivation of the theory of cohomology of sheaves is

based on the fact that the functor (see Section 1.4.1 for the definition of a

functor) taking global sections of a sheaf is not exact but only left exact,

i.e. given an exact sequence of sheaves of abelian groups

0→ F1 → F2 → F3 → 0

on a projective complex manifold X, by taking global sections we get an

exact sequence

0→ Γ(F1)→ Γ(F2)→ Γ(F3)

of abelian groups in which the last map Γ(F2) → Γ(F3) is in general not

surjective. Example 2.1.17 illustrates this.

The goal of cohomology is to extend the global section sequence to the

right in the following sense: for any sheaf F of abelian groups on X we will

define cohomology groups H i(X,F), for all i > 0 satisfying (among other

things) the following property: given any exact sequence

0→ F1 → F2 → F3 → 0

of sheaves on X, there is an induced long exact sequence of cohomology

groups

0 −−−→ Γ(X,F1) −−−→ Γ(X,F2) −−−→ Γ(X,F3) −−−→ H1(X,F1)

−−−→ H1(X,F2) −−−→ H1(X,F3) −−−→ H2(X,F1) −−−→ · · ·

where Γ(X,F1) = H0(X,F1). Let us now give the defintion of these coho-

mology groups. There are many ways to define these groups but the approach

we will use here is the approach of Čech cohomology. The idea of Čech co-

homology is simple: If X is a projective complex manifold, we choose an

open cover U = {Ui} of X and consider sections of our sheaves on these open

subsets and their intersections.

19



Definition 1.3.23. Let X be a complex manifold, and let F be a sheaf on

X. Fix an open cover {Ui}i∈I of X and assume that I is an ordered set. For

all p ≥ 0 we define the abelian group

Cp(F) :=
∏

i0<...<ip

F(Ui0 ∩ . . . ∩ Uip).

In other words, an element s ∈ Cp(F) is a collection s = (si0,...,ip) of sections

of F (which can be totally unrelated) over all intersections of p+1 sets taken

from the cover.

For every p ≥ 0 we define a boundary operator dp : Cp(F)→ Cp+1(F) by

(dps)i0,...,ip+1 =
∑p+1

k=0
(−1)ksi0,...,ik−1,ik+1,...,ip+1|Ui0

∩...∩Uip+1
.

Note that this makes sense since the si0,...,ik−1,ik+1,ip+1 are sections of F on

Ui0 ∩ . . . ∩ Uik−1
∩ Uik+1

∩ . . . ∩ Uip+1 , which contains Ui0 ∩ . . . ∩ Uip+1 as an

open subset.

By abuse of notation we will denote all these operators simply by d if it

is clear from the context on which Cp(F) they act.

Lemma 1.3.24. Let F be a sheaf of abelian groups on a complex manifold

X. Then dp+1 ◦ dp : Cp(F)→ Cp+2(F) is the zero map for all p ≥ 0.

Proof. ([G] Lemma 8.1.3) For every s ∈ Cp(F) we have

(dp+1(dps))i0,...,ip+2 =

p+2
∑

k=0

(−1)k(ds)i0,...,ik−1,ik+1,...,ip+2

From the definition of ds, we then get:

(dp+1(dps))i0,...,ip+2 =

p+2
∑

k=0

k−1
∑

m=0

(−1)k+msi0,...,im−1,im+1,...,ik−1,ik+1,...,ip+2

+

p+2
∑

k=0

p+2
∑

m=k+1

(−1)k+m−1si0,...,ik−1,ik+1,...,im−1,im+1,...,ip+2

= 0
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Note that the restriction maps are ommitted from the above equations for

ease of reading.

We have thus defined a sequence of abelian groups and homomorphisms

C0(F)
d0

−−−→ C1(F)
d1

−−−→ C2(F)
d2

−−−→ . . .

such that dp+1 ◦ dp = 0 at every step. Such a sequence is called a complex of

abelian groups, with the maps dp being the boundary operators.

Definition 1.3.25. Let F be a sheaf of abelian groups on a complex manifold

X. Pick an open cover {Ui} of X and consider the associated groups Cp(F)

and homomorphisms dp : Cp(F) → Cp+1(F) for p ≥ 0. We define the p-th

cohomology group of F to be

Hp(X,F) = ker dp/ im dp−1

with the convention that Cp(F) and dp are zero for p < 0. Note that this is

well-defined as im dp−1 ⊂ ker dp by Lemma 1.3.24.

Remark 1.3.26. Note that this defintion of the cohomology groups depends

on the choice of the open cover of X. However, if the open cover is chosen

appropriately, this dependence disappears. There are other constructions of

the cohomology groups, such as the derived functor approach, that do not

depend on the choice of an open cover and therefore do not face this problem.

For our purpose, it is sufficient to know the following: If X is a complex

projective manifold and X ⊂ Pn an embedding, then let Ui = {zi 6= 0} ⊂ Pn

be the standard open subsets of Pn. The sets X∩Ui form an open cover of X.

The Čech cohomology groups obtained using this open cover then coincide

with the cohomology groups one would obtain using the derived functor

approach and therefore the dependence on the open cover disappears.

1.4 Categories

Categories were first introduced by Samuel Eilenberg and Saunders Mac Lane

in 1942-1945, in connection with algebraic topology. The study of categories
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is known as category theory. It deals in an abstract way with mathematical

structures and relationships between them. Categories are particularly useful

in this thesis to provide us with a central unifying notion.

Definition 1.4.1. A category C consists of the following: a class obj(C) of

objects, a set HomC(A,B) of morphisms for every ordered pair of objects,

(A,B), an identity morphism idA ∈ HomC(A,A) for each object A, and a

composition function HomC(A,B) × HomC(B,C) → HomC(A,C) for every

ordered triple (A,B,C) of objects. We write f : A → B to indicate that f

is a morphism in HomC(A,B), and we denote the composition of f : A→ B

with g : B → C by gf or g ◦ f . The above data is subject to two axioms:

Associativity Axiom:

(hg)f = h(gf), for all f : A→ B, g : B → C, h : C → D in C

Unit Axiom:

idB ◦f = f = f ◦ idA, for all f : A→ B.

Example 1.4.2. One example to keep in mind is the category Sets of sets.

The objects are sets and the morphisms are (set) maps, that is, the elements

of HomSets(A,B) are the maps from A to B. Composition of morphisms is

just composition of maps, and idA is the map idA(a) = a for all a ∈ A.

One can similarly define the category Groups in which the objects are

groups and the morphisms are group homomorphisms. Composition is just

composition of group homomorphisms. The category Rings, is the cate-

gory whose objects are commutative rings with unity and the morphisms are

ring homomorphisms. The category Ab has objects abelian groups and the

morphisms are group homomorphisms.

Definition 1.4.3. A morphism f : A → B in a category, C is called an

isomorphism if there is a morphism g : B → A such that gf = idA and

fg = idB. If such a morphism exists, we say that A is isomorphic to B,

denoted A ∼= B. An isomorphism in Sets is a set bijection.
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Definition 1.4.4. A morphism f : B → C is called a monomorphism in C

if for all objects A in C and any two distinct morphisms e1, e2 : A → B we

have fe1 6= fe2. In Sets and Ab, in which objects have an underlying set,

the monomorphisms are precisely the morphisms that are set injections in

the usual sense.

A morphism f : B → C is called an epimorphism in C if for all objects

D ∈ C and any two distinct morphisms g1, g2 : C → D we have g1f 6= g2f .

In Sets and Ab, the epimorphisms are precisely the surjective morphisms.

Definition 1.4.5. A zero object is an object with precisely one morphism

to and from each object. We reserve the symbol 0 for the zero object. The

category Sets does not have a zero object, while the category Groups does

(namely the group with one element).

Let C be a category with a zero object and let A,B ∈ C. The unique

morphism A→ 0→ B is called the zero morphism, denoted 0 ∈ HomC(A,B).

Definition 1.4.6. Two monomorphisms A1 → B and A2 → B are equivalent

if there are morphisms A1 → A2 and A2 → A1 such that the following two

diagrams commute

A1

��

// B A1
// B

A2

>>~~~~~~~~
A2

OO >>~~~~~~~~

A subobject of B is an equivalence class of monomorphisms into B.

Similarly two epimorphisms B → C1 and B → C2 are equivalent if there

are morphisms C1 → C2 and C2 → C1 such that the following two diagrams

commute

B //

  @
@@

@@
@@

@
C1

��

B //

  @
@@

@@
@@

@
C1

C2 C2

OO

A quotient object is an equivalence class of epimorphisms.
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Definition 1.4.7. Let C be a category with a zero object, 0. A kernel of

a morphism f : B → C is a morphism i : A → B such that fi = 0 and

that satisfies the following universal property: Every morphism e : A′ → B

in C such that fe = 0 factors uniquely through A as e = ie′ for a unique

e′ : A′ → A. This can be visualised by the following commutative diagram:

A
i // B

f // C

A′

e′

OO�
�

�

e
>>}}}}}}}

Every kernel is a monomorphism, and two kernels of f are isomorphic; we

often identify the kernel of f with the corresponding subobject of B, and

denote it ker(f).

Definition 1.4.8. Let C be a category with a zero object. A cokernel of a

morphism f : B → C is a morphism p : C → D such that pf = 0 and that

satisfies the following universal property: Every morphism g : C → D′ such

that gf = 0 factors uniquely through D as g = g′p for a unique g′ : D → D′.

B
f // C

p //

g

  A
AA

AA
AA

A D

g′

���
�

�

D′

We often identify the cokernel of f with the corresponding object, D, and

denote it coker(f). Every cokernel is an epimorphism, and any two cokernels

are isomorphic. In Ab and Groups kernel and cokernel have their usual

meanings.

Definition 1.4.9. Let C be a category which admits kernels and cokernels

(i.e. every morphism has a kernel and a cokernel). Let f : A → B be a

morphism in C. We define the coimage of f , denoted coim(f), to be the

cokernel of h, where h : ker f → A. We define the image of f , denoted im(f)

to be the kernel of g, where g : B → coker(f). Consider now the following
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diagram:

ker(f) h // A
f //

k
��

B
g // coker(f)

coim(f)
u //___

f

99t
t

t
t

t
t

im(f)

OO

Now since fh = 0, f factors uniquely through fk as f = f ◦ k. By definition

of cokernel, g ◦ f = g ◦ f ◦ k = 0 and k is an epimorphism (as it is a

cokernel). Hence we get g ◦ f = 0. Since im(f) is the kernel of g, by the

universal property of the kernel, we know that there exists a unique morphism

u : coim(f)→ im(f) such that the diagram above is commutative.

Definition 1.4.10. Let C be a category which admits kernels and cokernels,

and let f : A → B be a morphism in C. The morphism f is called strict if

u : coim(f)→ im(f) constructed above is an isomorphism.

Definition 1.4.11. Let C be a category which admits kernels and cokernels,

and let Ci be objects in C for all i. A sequence of morphisms in C

· · · // C1
f1 // C2

f2 // C3
f3 // · · ·

is exact if im(fi−1) = ker(fi) for all i. If A,B,C are objects in C we say a

sequence of morphisms in C

0 // A
f // B

g // C // 0

is a short exact sequence if im(f) = ker(g) and f is a monomorphism and g

is an epimorphism.

Definition 1.4.12. An object P is called a product of two objects A and B

if there exist morphisms P
p1 // A and P

p2 // B such that for every pair

of morphisms X → A and X → B there is a unique X → P such that

A

X

>>}}}}}}}
//___

  A
AA

AA
AA

P

p1

OO

pr2

��
B
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commutes.

In the categories, Sets, Groups and Rings products can be constructed

by taking Cartesian products.

Proposition 1.4.13. If P and P ′ are products of A and B they are isomor-

phic.

Proof. ([F] Proposition 1.71) Let P
p1 // A, P

p2 // B, P ′
p′1 // A, and

P ′
p′2 // B, be the morphisms satisfying the conditions of the definition of a

product of A and B. According to the definition we know there is a unique

morphism P → P ′ such that the following diagram

A

P

p1
>>}}}}}}}} f //

p2   A
AA

AA
AA

A P ′

p′1

OO

p′2
��
B

commutes and there is a unique morphism P ′ → P such that the diagram

A

P ′

p′1
>>}}}}}}}} g //

p′2   A
AA

AA
AA

P

p1

OO

p2

��
B

commutes. The composition x := g ◦ f gives us the following commutative

diagram

A

P

p1
??~~~~~~~

x //

p2 ��@
@@

@@
@@

P

p1

OO

p2

��
B
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By definition of product, we know that x must be unique and this implies

that x = idP , the identity morphism of P . Similarly we can show that

f ◦ g = idP ′.

The dual of the product is the sum. The definition of sum is just the

definition of product with all arrows reversed as follows:

Definition 1.4.14. An object S is called a sum of two objects, A and B, if

there exist morphisms A
µ1 // S and B

µ2 // S such that for every pair of

morphisms A→ X and B → X there is a unique S → X such that

A

  A
AA

AA
AA

µ1

��
S //___ X

B

µ2

OO >>}}}}}}}

commutes.

Proposition 1.4.15. If S and S ′ are sums of A and B, they are isomorphic.

Proof. The proof is analogous to the proof of 1.4.13 with arrows reversed.

In well-known categories the word “sum” is traditionally replaced by:

Category Sum

Sets Disjoint union

Ab Direct sum (Cartesian product)

Groups Free product

Rings Tensor product

Remark 1.4.16. The product and the sum do not always exist in categories.

In Chapter 4 we will see an example of a category (CohSysst(X)) in which

the product of two objects does not exist.

27



Definition 1.4.17. A category C is called of finite length if it satisfies the

following two conditions:

(a) Any sequence of epimorphisms stabilises, i.e. for any sequence of epi-

morphisms fk : Ck → Ck+1 there exists an integer k0 such that fk is an

isomorphism for all k ≥ k0.

(b) Any sequence of monomorphisms stabilises, i.e. for any sequence of

monomorphisms gk : Ck → Ck+1 there exists an integer k0 such that gk is an

isomorphism for all k ≤ k0.

Example 1.4.18. The category of finite dimensional vector spaces over a

fixed field is of finite length. This is a consequence of the fact that a linear

map between finite dimensional vector spaces of the same dimension which is

either an epimorphism or a monomorphism is automatically an isomorphism.

This is no longer true for vector spaces of infinite dimension. In fact it is not

hard to give examples which show that the category of (not necessarily finite

dimensional) vector spaces neither satisfies (a) nor (b) in Definition 1.4.17.

1.4.1 Functors

We have seen that a category is itself a mathematical structure. Let us now

look at a ‘process’, namely a functor, which preserves this structure in some

precise sense, outlined below.

Definition 1.4.19. A functor F : C → D from a category C to a cat-

egory D associates an object F (C) of D to every object C of C, and a

morphism F (f) : F (C1) → F (C2) in D to every morphism f : C1 → C2

in C. We require F to preserve identity morphisms (F (idC) = idF (C))

and composition (F (gf) = F (g)F (f)). Note that F induces set maps

HomC(C1, C2)→ HomD(F (C1), F (C2)), for every C1, C2 in C.

The identity functor idC : C → C fixes all objects and morphisms, that

is, idC(C) = C, idC(f) = f . Clearly, for a functor F : C → D we have

F ◦ idC = F = idD ◦F .
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Example 1.4.20. We have seen an example of a functor in Section 1.3,

namely the global sections functor. This is a functor from the category,

Sh(X), of sheaves of abelian groups (with sheaf morphisms) on a complex

manifold, X, to Ab.

Example 1.4.21. Let C be any category and let N be a fixed object in C.

Consider a functor F := Hom(N,−) defined by F (A) = HomC(N,A) for any

object A ∈ C and for any morphism f : A → B, then F (f) : Hom(N,A) →

Hom(N,B) is defined by F (f)(α) := f ◦ α, for all α ∈ Hom(N,A). Let us

check that this really is a functor. Clearly F preserves identity, i.e. F (idA) =

idF (A). Let f : A → B and g : B → C be two morphisms in C. We must

check that F (gf) = F (g)F (f) so we have

F (gf)(α) = g ◦ f ◦ α

and

F (g)(F (f)(α)) = F (g)(f ◦ α) = g ◦ f ◦ α.

So we see that F preserves composition. Hence, F = HomC(N,−) is a functor

from C to Sets.

Definition 1.4.22. A funtor, F : C → D is called left exact (resp. right

exact) if for every short exact sequence 0 → A → B → C → 0 in C, the

seqence 0 → F (A)→ F (B) → F (C) (resp. F (A) → F (B) → F (C) → 0) is

exact in D. F is called exact if it is both left and right exact.

Example 1.4.23. The global section functor of Example 1.4.20 is left ex-

act. We will see another example of a left exact functor in Section 1.4.4,

Proposition 1.4.58.

Definition 1.4.24. A functor F : C → D is called faithful if the set maps

HomC(C,C
′) → HomD(F (C), F (C ′)) are all injections. That is, if f1 and f2

are distinct morphisms from C to C ′ in C, then F (f1) 6= F (f2).

A subcategory B of a category C is a collection of some of the objects

and some of the morphisms, such that the morphisms of B are closed under
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composition and include idB for every B ∈ B. A subcategory is a category in

its own right, and there is an inclusion functor, which is faithful by definition.

A subcategory B in which HomB(B,B′) = HomC(B,B
′) for every B,B′

in B is called a full subcategory. A full subcategory is called a strictly full

subcategory if for any B ∈ B and C ∈ C with B ∼= C, we have C ∈ B.

A functor F : C → D is called full if HomC(C,C
′)→ HomD(F (C), F (C ′))

are all surjections. That is, every g : F (C) → F (C ′) in D is of the form

g = F (f) for some f : C → C ′. A functor that is both full and faithful is

called fully faithful.

All the functors above are called covariant functors, in order to distinguish

them from contravariant functors, defined below.

Definition 1.4.25. A contravariant functor F : C → D associates an object

F (C) of D to every object C of C, and a morphism F (f) : F (C2) → F (C1)

in D to every f : C1 → C2 in C. Moreover, F (idC) = idF (C) and F reverses

composition, i.e. F (gf) = F (f)F (g) for all f, g, composable morphisms in C.

Example 1.4.26. Let C be any category. Similar to Example 1.4.21 if we

let M ∈ C, then HomC(−,M) is a contravariant functor from C to Sets.

1.4.2 Abelian categories

We need to define an important type of category for the purpose of this

thesis, namely an abelian category. The axioms required for a category to

be an abelian category are as follows:

Definition 1.4.27. A category A is abelian if

1. A has a zero object.

2. For every pair of objects there is a product.

2∗. For every pair of objects there is a sum.

3. Every morphism has a kernel and a cokernel.

4. Every epimorphism is the cokernel of its kernel.

5. Every monomorphism is the kernel of its cokernel.

30



Remark 1.4.28. Only one of axioms 2 or 2∗ suffices for a category to be

abelian, i.e. each in the presence of the other axioms implies the other. The

proof of this is not straightforward and can be found in Section 1.598 of [FS].

It is possible to show (See [F], Theorem 2.39) that these axioms suffice to

introduce a group structure on each set HomA(A,B), for A,B ∈ A in such a

way that composition distributes over addition, i.e. given f, f ′ : A→ B and

g, g′ : B → C, we have

(g + g′) ◦ (f + f ′) = g ◦ f + g ◦ f ′ + g′ ◦ f + g′ ◦ f ′.

Example 1.4.29. The category Ab of abelian groups is an abelian category.

Another abelian category is the category Coh(X) of coherent sheaves on a

complex manifold, X.

Definition 1.4.30. An additive category, A, is a category in which for any

two objects A,B in A the set HomA(A,B) is equipped with the structure of

an abelian group such that composition distributes over addition and A has

a zero object and a product A× B for every pair A,B of objects in A.

Due to Remark 1.4.28, each abelian category is an additive category.

However, there exist additive categories which are not abelian.

Example 1.4.31. The category CohSys(C), of coherent systems with mor-

phisms of coherent systems on a curve C, which will be outlined in Chapter

4 is an additive category but is not an abelian category.

Lemma 1.4.32. A morphism f : B → C in an additive category A is a

monomorphism if and only if ker f = 0.

Proof. Let f : B → C be a monomorphism in A. By definition, we know

that for any e1, e2 : A → B, fe1 = fe2 implies e1 = e2. We want to show

that ker(f) = 0, i.e. given

0
e // B

f // C

A′

g

OO�
�

� e′

>>}}}}}}}
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where fe′ = 0, we must show that there exists a unique g such that eg = e′.

The only morphism A′ → 0 is the zero morphism. It remains to show then

that e′ : A′ → B is the zero morphism. This follows again from the fact that

f is a monomorphism, because f ◦ e′ = f ◦ 0 = 0.

Now assume that ker(f) = 0, we want to show that f : B → C is a

monomorphism. Since ker(f) = 0, we have the following diagram

0 // B
f // C

A′

OO

e′

>>}}}}}}}

So for any morphism e′ : A′ → B such that fe′ = 0, we have that e′ = 0.

Hence if e1, e2 : A → B are two morphisms such that fe1 = fe2, then

f ◦ (e1 − e2) = 0 and so e1 = e2. This shows that f is a monomorphism.

Lemma 1.4.33. A morphism f in an additive category, A, is an epimor-

phism if and only if coker f = 0.

Proof. The proof is analagous to the monomorphism case (Lemma 1.4.32)

with arrows reversed.

Proposition 1.4.34. ([KS] Definition 8.3.5) An additive category, A, is

abelian if and only if:

(a) every morphism has a kernel and cokernel,

(b) any morphism f in A is strict (See Definition 1.4.10).

Proof. If A is an abelian category, by definition every morphism has a kernel

and cokernel. The proof of (b) is more involved, see [F] Theorem 2.11.

Now assume that A is an additive category in which every morphism

has a kernel and cokernel and any morphism f in A is strict. We want to

show that A is abelian. Clearly under these assumptions, Axioms 1,2,3 of

Definition 1.4.27 are satisfied. So we must now show that every epimorphism

is the cokernel of its kernel. Assume f : A → B is an epimorphism in A.

Since f is strict, we know that im f ∼= coim f . We also know, from Lemma
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1.4.33, that coker(f) = 0. This gives us that im(f) = ker(B → 0) = B.

Consider then the following diagram in which u is an isomorphism:

ker(f)
h

−−−→ A
f

−−−→ B
g

−−−→ 0

k





y

∥

∥

∥

coim(f)
u

−−−→ B

By definition coim(f) = coker(h). Through the isomorphism u, we then get

that the f : A→ B is the cokernel of its kernel.

Similarly we can show that every monomorphism is the kernel of its cok-

ernel. Hence, A is an abelian category.

1.4.3 Derived categories

The derived category, D(A), of an abelian category A is a construction that

was developed in homological algebra by Alexander Grothendieck and his

student Jean-Louis Verdier in the 1960’s. The construction of a dervied

category is carried out using a number of steps which we will outline below.

Throughout this section A will denote an abelian category, unless otherwise

specified.

Step 1 :

We define C(A), the category of chain complexes. The objects are chain

complexes A• given below

A• := (· · · → An
dn

A→ An+1 dn+1
A→ · · · )

with An ∈ A, n ∈ Z and where dA = dnA : An → An+1 (called the differentials)

are morphisms in A such that each composite dn+1
A ◦ dnA : An → An+2 is zero.

Note that we have seen an example of a chain complex of abelian groups in

Section 1.3.2.

Definition 1.4.35. A morphism of complexes f : A• → B• is a chain

complex map, i.e. a family of morphisms fn : An → Bn in A commuting
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with differentials in the sense that fn+1dnA = dnBf
n. That is, such that the

following diagram commutes

· · ·
dn−2

A // An−1

fn−1

��

dn−1
A // An

fn

��

dn
A // An+1

fn+1

��

dn+1
A // · · ·

· · ·
dn−2

B // Bn−1
dn−1

B // Bn
dn

B // Bn+1
dn+1

B // · · ·

Definition 1.4.36. For n ∈ Z, the n-th cohomology of a complex A• is

Hn(A•) = ker(dnA)/ im(dn−1
A ).

If f : A• → B• is morphism of complexes, then we get induced cohomology

morphisms in A

Hn(f) : Hn(A•)→ Hn(B•)

where Hn(f)([an]) := [f(an)], with [an] ∈ ker(dnA)/ im(dn−1
A ). A morphism

of complexes is a quasi-isomorphism if the morphisms Hn(f) : Hn(A•) →

Hn(B•) are all isomorphisms.

Remark 1.4.37. The Freyd-Mitchell’s embedding Theorem ([F] Theorem 4.4

and Theorem 7.34) tells us that a small abelian category (a category is called

small if its class of objects is a set) is equivalent to a full subcategory of the

category of modules over a ring, R. Since abelian categories are abstractly

defined and the objects don’t have elements, in general, this theorem allows

us to use elements in the proofs needed in this section. However, the proofs

could also be carried out using universal properties.

Definition 1.4.38. A chain complex A• is called bounded if almost all the

An are zero, i.e. if there exists a, b ∈ Z such that for any n ∈ Z, An = 0 unless

a ≤ n ≤ b. The category of bounded chain complexes is denoted Cb(A).

Theorem 1.4.39. ([W] Theorem 1.3.1) Each short exact sequence of com-

plexes

0→ A• → B• → C• → 0

gives rise to a long exact cohomology sequence

· · · → H−1(C•)→ H0(A•)→ H0(B•)→ H0(C•)→ H1(A•)→ · · ·
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The following lemma will be useful in proofs later on. It is a well-known

lemma and can be found in [W] Exercise 1.3.3.

Lemma 1.4.40. (5-Lemma) In any commutative diagram

A′ //

a

��

B′ //

b

��

C ′ //

c

��

D′ //

d

��

E ′

e

��
A // B // C // D // E

with exact rows in any abelian category, if a, b, d and e are isomorphisms,

then c is also an isomorphism.

Step 2 :

The second step in defining the derived category of an abelian category, is

to define the homotopy categoryK(A). First we need the following definition:

Definition 1.4.41. Let f : A• → B• be a morphism of complexes in A and

let hn : An → Bn−1 be a collection of morphisms in A. The morphism f is

null-homotopic if fn = dn−1
B hn+hn+1dnA for all n ∈ Z. This can be visualised

by the following diagram

· · · // An−1 // An
dn

A //

fn

��

hn

{{xx
xx

xx
xx

x
An+1

dn+1
A //

fn+1

��

hn+1

{{xx
xx

xx
xx

x
An+2 //

hn+2

zzvv
vv

vv
vv

v
· · ·

· · · // Bn−1
dn−1

B

// Bn
dn

B

// Bn+1 // Bn+2 // · · ·

Definition 1.4.42. Let f, g : A• → B• be two morphisms of complexes in

A. We say that f and g are homotopic (denoted f ∼ g) if their difference

f − g is null-homotopic.

Lemma 1.4.43. Let f, g : A• → B• be two morphisms of complexes in A. If

f and g are homotopic, they induce the same morphisms Hn(A•)→ Hn(B•).

Proof. ([W] Lemma 1.4.5) By Definition 1.4.42, we know that f − g : A• →

B• is null homotopic, i.e. fn − gn = dn−1
B hn + hn+1dnA, for some collection of
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morphisms hn : An → Bn−1 in A and for all n ∈ Z. Recall that Hn(f) :

ker(dnA)/ im(dn−1
A ) → ker(dnB)/ im(dn−1

B ) is given by Hn(f)([an]) = [f(an)],

with [an] ∈ ker(dnA)/ im(dn−1
A ). Now let us consider Hn(f) − Hn(g). We

know

(Hn(f)−Hn(g))([an]) = [f(an)− g(an)]

= [dn−1
B hn(an) + hn+1dnA(an)]

Now the first summand, i.e. dn−1
B hn(an) ∈ im dn−1

B and since an ∈ ker(dnA),

the second summand is zero. Hence we get

Hn(f)−Hn(g) = 0.

In other words, f and g induce the same morphisms Hn(A•)→ Hn(B•).

Definition 1.4.44. The homotopy category K(A) has the same objects as

C(A). Its morphisms from A• → B• are the classes of morphisms of com-

plexes f : A• → B• modulo the null-homotopic morphisms. The homotopy

category in which all the complexes are bounded is denoted Kb(A).

Definition 1.4.45. A morphism s : A• → B• of K(A) is defined to be a

quasi-isomorphism if the induced morphisms Hn(s) : Hn(A•)→ Hn(B•) are

invertible for all n ∈ Z. We denote by Σ the class of all quasi-isomorphisms.

Step 3 :

Our aim now is to define the derived category D(A) as the ‘localization’

Σ−1K(A) of the category K(A) at the class Σ. By construction K(A) is an

additive category. We have the following lemma:

Lemma 1.4.46. (a) Identities are quasi-isomorphisms and compositions of

quasi-isomorphisms are quasi-isomorphisms.

(b) Each diagram

A′• s
← A• f

→ B• (resp. A′• f ′

→ B′• s
← B•)
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of K(A) where s (resp. s′) is a quasi-isomorphism, may be embedded into a

square

A•
f //

s

��

B•

s′

��
A′•

f ′
// B′•

which commutes in K(A).

(c) Let f be a morphism in K(A). Then there is a quasi-isomorphism s

such that sf = 0 in K(A) if and only if there is a quasi-isomorphism t such

that ft = 0 in K(A).

Proof. For a proof see [KS], 1.6.7.

Clearly condition (a) of the above lemma would also be true for the pre-

image of Σ in the category of complexes. However, for (b) and (c) to be

true, it is essential to pass to the homotopy category. Historically, this was

the main reason for inserting the homotopy category between the category of

complexes and the derived category. We are now ready to define the derived

category, D(A).

Definition 1.4.47. The objects of D(A) are the same as the objects of K(A)

and the morphisms in D(A) from A• to B• are given by “left-fractions”,

“s−1 ◦ f”, i.e. equivalence classes of diagrams (also called “roofs”)

B′•

A•

f
==zzzzzzzz

B•

s
aaDDDDDDDD

where s is a quasi-isomorphism and a pair (f, s) is equivalent to (f ′, s′) if and
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only if there is a commutative diagram of K(A)

B′•

��
A•

f
<<yyyyyyyy f ′′ //

f ′ ""E
EE

EE
EE

E B′′′• B•

s
bbEEEEEEEE

s′||yy
yy

yy
yy

s′′oo

B′′•

OO

where s′′ is a quasi-isomorphism. The composition of (f, s) and (g, t) is

defined by

t−1g ◦ s−1f = (s′t)−1 ◦ g′f

where s′ ∈ Σ and g′ are constructed using Lemma 1.4.46(b) from above as

in the following commutative diagram of K(A)

C ′′•

B′•

g′
<<yyyyyyyy

C ′•

s′
bbEEEEEEEE

A•

f
==zzzzzzzz

B•

s
bbEEEEEEEE

g
<<yyyyyyyy

C•

t
aaDDDDDDDD

One can then check that composition is associative and admits identities.

Remark 1.4.48. Using ‘right fractions’ instead of left fractions we can obtain

an isomorphic category (using Lemma 1.4.46).

The full subcategory of D(A) whose objects are bounded complexes is de-

noted Db(A) and called the bounded derived category of the abelian category,

A.

Remark 1.4.49. The abelian category A becomes a full subcategory of Db(A)

and D(A) by sending an object A to the complex which has A at position 0

and 0 elsewhere.
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Triangles as generalized short exact sequences

In this section we introduce some diagrams in derived categories, called exact

triangles. These may be thought of as analogues of short exact sequences

in the sense that they both give rise to long exact cohomology sequences

(Theorem 1.4.39). First let me introduce some notation and concepts needed

later. Let A be an abelian category. All complexes below are assumed to be

objects of Cb(A).

Definition 1.4.50. Fix an integer n and for any complex A• = (Ai, diA),

we define a new complex A[n]• by (A[n])i = An+i, dkA[n] = (−1)ndk+nA . For

a morphism of complexes f : A• → B•, let f [n] : A[n]• → B[n]• coin-

cide with f componentwise. We then have a functor T n : C(A) → C(A),

T n(A•) = A[n]•, T n(f) = f [n]. This is called a translation by n functor.

Note that translation shifts homology

H i(A[n]•) = H i+n(A•)

Now let us give some definitions that are needed to formulate the next

lemma.

Definition 1.4.51. Let f : A• → B• be a morphism of complexes. The cone

of f is the following complex cone(f):

cone(f)n = A[1]n ⊕ Bn, dcone(f)(a
n+1, bn) = (−dAa

n+1, f(an+1) + dBb
n)

with an+1 ∈ An+1, bn ∈ Bn. It is useful to write the differential as a matrix,

so that

dncone(f) =

(

−dn+1
A 0

fn+1 dnB

)

.

Note that cone(f) sits in a short exact sequence

0→ B• → cone(f)→ A[1]• → 0

of chain complexes, where the left map sends b to (0, b), and the right map

sends (a, b) to (a).
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Definition 1.4.52. The cylinder cyl(f) of a morphism f : A• → B• is the

following complex:

cyl(f) = A• ⊕ A[1]• ⊕ B•

dncyl(f)(a
n, an+1, bn) = (dAa

n − an+1,−dAa
n+1, f(an+1) + dBb

n)

with an ∈ An, an+1 ∈ An+1, bn ∈ Bn. The differential is given by the following

matrix

dncyl(f) =







dnA − idA 0

0 −dn+1
A 0

0 fn+1 dnB






.

Now in order to introduce distinguished triangles and to prove the next

proposition we need the following lemma.

Lemma 1.4.53. For any morphism f : A• → B• of complexes there exists

the following commutative diagram in Cb(A) with exact rows:

0 −−−→ B• π
−−−→ cone(f)

δ=δ(f)
−−−−→ A[1]• −−−→ 0





y

α

∥

∥

∥

0 −−−→ A• f
−−−→ cyl(f)

π
−−−→ cone(f) −−−→ 0

∥

∥

∥





y

β

A• f
−−−→ B•

(1.3)

Moreover β ◦α = idB and α ◦β is homotopic to idcyl(f). In particular, α and

β are quasi-isomorphisms.

Proof. ([GM], III.3) The definitions of the morphisms in Cb(A) are as follows:

πi : cyl(f)i = Ai⊕Ai+1⊕Bi → cone(f)i = Ai+1⊕Bi, (ai, ai+1, bi) 7→ (ai+1, bi)

πn : Bn → cone(f)n = An+1 ⊕Bn, bn 7→ (0, bn).

f
n

: An → cyl(f)n = An ⊕An+1 ⊕Bn, an 7→ (an, 0, 0).

αn : Bn → cyl(f)n = An ⊕ An+1 ⊕ Bn, bn 7→ (0, 0, bn).
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βn : cyl(f)n = An ⊕ An+1 ⊕ Bn → Bn, (an, an+1, bn) 7→ f(an) + bn.

δn : cone(f)n = An+1 ⊕Bn → An+1, (an+1, bn) 7→ an+1.

The fact that these really are morphisms in Cb(A), that the diagram is com-

mutative and that the rows are exact is verified in [GM], III.3. From these

definitions β ◦ α = idB is obvious. It remains to show then that α ◦ β is

homotopic to idcyl(f). Define hi as follows:

hn : cyl(f)n = An ⊕An+1 ⊕Bn → cyl(f)n−1 = An−1 ⊕An ⊕Bn,

(an, an+1, bn) 7→ (0, an, 0).

So from this we have

dcyl(f)h
n(an, an+1, bn) = (−an,−dAa

n, f(an))

and

hndcyl(f)(a
n, an+1, bn) = (0, dAa

n − an+1, 0).

Hence we get

(hndn−1
cyl(f) + dn+1

cyl(f)h
n)(an, an+1, bn) = (−an,−an+1, f(an))

On the other hand

(α ◦ β − idcyl(f))(a
n, an+1, bn) = (−an,−an+1, f(an))

Hence α ◦ β − idcyl(f) = hd+ dh, i.e. α and β are homotopic inverses of each

other.

Definition 1.4.54. a) A triangle in a category whose objects are complexes

is a diagram of the form

A• u
−−−→ B• v

−−−→ C• w
−−−→ A[1]•,

where u, v, w are morphisms in that category.
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b) A morphism of triangles in such a category is a commutative diagram

of the form
A• u
−−−→ B• v

−−−→ C• w
−−−→ A[1]•





y

f





y

g





y
h





y

f [1]

A′• u′

−−−→ B′• v′

−−−→ C ′• w′

−−−→ A′[1]•

Such a morphism is said to be an isomorphism if f, g, h are isomorphisms in

that category.

c) A triangle in Kb(A) or Db(A) is said to be distinguished if it is isomor-

phic to the triangle

A• f
−−−→ cyl(f)

π
−−−→ cone(f)

δ
−−−→ A[1]•

from Lemma 1.4.53 for some morphism of complexes f : A• → B•.

Remark 1.4.55. Lemma 1.4.53 shows that for any morphism of complexes

f : A• → B•, the triangle

A• f
−−−→ B• π

−−−→ cone(f)
δ

−−−→ A[1]•

is distinguished in Kb(A) and Db(A).

The next proposition shows that any short exact sequence of complexes

can be completed to a distinguished triangle.

Proposition 1.4.56. If

0 // A•
f // B•

g // C• // 0 (1.4)

is a short exact sequence of complexes, then there exists a distinguished tri-

angle

A•
f // B•

g // C• δ // A[1]•

in Db(A).
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Proof. Using notation from Lemma 1.4.53, we have a commutative diagram

in Cb(A) with exact rows:

0 −−−→ A• f
−−−→ B• g

−−−→ C• −−−→ 0
∥

∥

∥

x





β

x





γ

0 −−−→ A• f
−−−→ cyl(f)

π
−−−→ cone(f) −−−→ 0

(1.5)

where γn : cone(f)n → Cn is given by γn(an+1, bn) := gn(bn). Let us verify

first that γ is a morphism of complexes.

γn+1dncone(f)(a
n+1, bn) = γn+1(−dn+1

A an+1, fn+1(an+1) + dnBb
n)

= gn+1(fn+1(an+1) + dnBb
n).

Since (1.4) above is a short exact sequence, we know gn+1(fn+1(an+1)) = 0.

Hence γn+1dncone(f)(a
n+1, bn) = gn+1(fn+1(an+1) + dnBb

n) = gn+1(dnBb
n). Now

dnC(γn(an+1, bn)) = dnC(gn(bn)). But g is a morphism of complexes, so we get

dnC(γn(an+1, bn)) = gn+1(dnB, b
n). Hence γ is a morphism of complexes.

Now let us verify that the right square in (1.5) is commutative. Firstly

gn(βn(an, an+1, bn)) = gn(f(an) + bn) = gn(bn). Also, γn(π(an, an+1, bn)) =

γ(0, bn) = gn(bn). Hence the right square is commutative.

We know β is a quasi-isomorphism, hence the 5-lemma (Lemma 1.4.40)

implies that γ is a quasi-isomorphism aswell. Hence the roof

cone(f)
δ

$$J
JJJJJJJJ

γ

{{wwwwwwwww

C• A[1]•

where δ (as defined in Lemma 1.4.53) gives a morphism δ : C• → A[1]• in

Db(A) such that the diagram

A• f
−−−→ B• π

−−−→ cone(f)
δ

−−−→ A[1]•
∥

∥

∥

∥

∥

∥





y

γ

∥

∥

∥

A• f
−−−→ B• g

−−−→ C• δ
−−−→ A[1]•

(1.6)
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(with π also as in Lemma 1.4.53) gives the required isomorphism in Db(A).

Remark 1.4.57. There is also the notion of a triangulated category, which

generalises the structure that distinguished triangles give to K(A). There are

a number of axioms to be satisfied in order for a category to be a triangulated

category (See [GM] Section IV.1, [W] Section 10.2). We do not need this level

of generality for this thesis, except to note that the derived category of an

abelian category is in fact also a triangulated category.

1.4.4 Derived functors

We begin with a proposition to serve as a motivation for the notion of derived

functors.

Proposition 1.4.58. Let A be an abelian category. Then F = HomA(N,−)

is a left exact functor from A to Ab for every object N in A. That is,

according to Definition 1.4.22, given a short exact sequence

0 // A
f // B

g // C → 0 (1.7)

in A, we get the following exact sequence of abelian groups:

0 // Hom(N,A)
F (f) // Hom(N,B)

F (g) // Hom(N,C) . (1.8)

Proof. ([W] Proposition 1.6.8) If α ∈ Hom(N,A) then F (f)(α) = f ◦ α.

We know since (1.7) is exact, that f is a monomorphism. Hence if f ◦ α =

F (f)(α) = 0, then α must be zero. This implies that F (f) is a monomor-

phism.

Again since (1.7) is exact, we know g ◦ f = 0. This gives us that

F (g)F (f)(α) = g ◦ f ◦ α = 0, so F (g)F (f) = 0. It remains to show that

im(F (f)) ⊇ ker(F (g)), i.e. if β ∈ Hom(N,B) is such that F (g)(β) = g ◦ β is

zero, then β = f ◦ α for some α. Exactness of (1.7) implies that f : A→ B

is the kernel of g. The universal property of ker(g) gives then that β factors

through f : A→ B if g ◦ β = 0.
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Now if we want to extend the sequence (1.8) to the right, we need the

notion of a right derived functor. In order to define this we need the following

definition.

Definition 1.4.59. An object M in an abelian category A is called injective

if it satisfies the following universal lifting property: Given an monomorphism

f : A→ B and a morphism α : A→ M , there exists at least one morphism

β : B →M such that α = β ◦ f .

0 // A
f //

α

��

B

β~~}
}

}
}

M

We say that A has enough injectives if for every object A in A there is a

monomorphism A→ M with M injective.

Lemma 1.4.60. An object M in an abelian category A is injective if and

only if F = HomA(−,M) is an exact functor. That is, if and only if the

sequence of groups

0 // Hom(C,M)
F (g) // Hom(B,M)

F (f) // Hom(A,M) // 0

is exact for every exact sequence 0 // A
f // B

g // C // 0 in A.

Proof. ([W] Exercise 2.5.1) Suppose that F = Hom(−,M) is exact and that

we are given a monomoprhism f : A→ B and a morphism α : A→ M . We

can lift α ∈ Hom(A,M) to β ∈ Hom(B,M) such that α = F (f)(β) = β ◦ f

because F (f) is an epimorphism. Thus M is injective as it has the universal

lifting property as in Definition 1.4.59.

Conversely, suppose that M in injective. To show that F is exact, it

suffices to show that F (f) is a monomorphism for every short exact sequence

as above. Given α ∈ Hom(A,M), the universal lifting property of M gives

β ∈ Hom(B,M) so that α = β ◦ f = F (f)(β), i.e. F (f) is a monomorphism.
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Definition 1.4.61. Let M be an object of A, an abelian category. An

injective resolution is a complex I• of injective objects, with I i = 0 for i < 0

and a morphism M → I0 such that the complex

0→ M → I0 → I1 → I2 → · · ·

is exact.

Lemma 1.4.62. ([W] Lemma 2.3.6) If an abelian category A has enough

injectives, then every object in A has an injective resolution.

Definition 1.4.63. If F : A → B is a left exact functor and A has enough

injectives, the right derived functors RiF can be defined as follows:

RiF (M) := H i(F (I•))

where I• is an injective resolution of M .

Remark 1.4.64. Applying a left exact functor F to an exact sequence

0→M → I0 → I1

gives

0→ F (M)→ F (I0)→ F (I1)

hence F (M) ∼= R0F (M). If M itself is injective, we can use I0 = M, I i = 0

for all i > 0 and obtain RiF (M) = 0 for all i > 0.

Example 1.4.65. The cohomology groups as defined in Section 1.3.2 are an

example of a right derived functor of sheaves of abelian groups on a complex

manifold X, i.e. H i(X,F) = RiΓ(F), where F is a sheaf of abelian groups

on X.

Definition 1.4.66. Given an object M with an injective resolution

0→ M → I0 → I1 → I2 → · · ·

we define the Ext functor, i.e. the right derived functor of Hom(N,−) as

follows: Exti(N,M) := H i(Hom(N, I•)). In particular, because of the left

exactness of Hom(N,−) we have Ext0(N,M) = Hom(N,M).
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Theorem 1.4.67. ([H] Theorem III.1.1A) Let F be an additive functor.

Each short exact sequence

0→ M ′ → M → M ′′ → 0

of objects of A, gives rise to a long exact sequence

0→ R0F (M ′)→ R0F (M)→ R0F (M ′′)→ R1F (M ′)→ R1F (M)→ · · ·

As an example consider a short exact sequence

0→ M ′ → M → M ′′ → 0

of objects of A. Applying the Ext functor to this sequence we get a long

exact sequence

0→ Hom(N,M ′)→ Hom(N,M)→ Hom(N,M ′′)→ Ext1(N,M ′)→ · · ·

If M ′ is injective, then from Remark 1.4.64 we get Ext1(N,M ′) = 0, hence

the Hom sequence

0→ Hom(N,M ′)→ Hom(N,M)→ Hom(N,M ′′)→ 0.

is exact.

Remark 1.4.68. If A is an abelian category with enough injectives

Exti(A,B) ∼= HomDb(A)(A
•, B[i]•)

for all A,B ∈ A ([W] Section 10.7).
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Chapter 2

Stability of vector bundles

2.1 Vector bundles

We now want to introduce the notion of a holomorphic vector bundle. A line

bundle (Definition 1.2.6) is in particular a vector bundle of rank 1. Again,

throughout this chapter X will denote a complex manifold, unless otherwise

specified.

Definition 2.1.1. A holomorphic vector bundle of rank r is a holomorphic

map p : E → X of complex manifolds which satisfies the following conditions:

1. For any point x ∈ X, the preimage Ex := p−1(x) (called a fibre) has a

structure of an r-dimensional C-vector space.

2. The mapping p is locally trivial, i.e. for any point x ∈ X, there exists

an open neighbourhood Ui containing x and a biholomorphic map

ϕi : p−1(Ui)→ Ui × Cr such that the diagram

p−1(Ui)
ϕi //

p
##G

GG
GG

GG
GG

Ui × Cr

pr1
{{wwwwwwwww

Ui
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commutes.

Moreover, ϕi takes the vector space Ex isomorphically onto {x} ×Cr for

each x ∈ Ui; ϕi is called a trivialisation of E over Ui. Note that for any pair

of trivialisations ϕi and ϕj the map

gij : Ui ∩ Uj → GL(r,C)

given by

gij(x) = ϕi ◦ (ϕj)
−1|{x}×Cr , i.e. ϕi(ϕ

−1
j (x, v)) = (x, gij(x)v)

is holomorphic; the maps gij are called transition functions for E relative

to the trivialisations ϕi, ϕj. The transition functions of E necessarily satisfy

the identities

gij(x) ◦ gji(x) = id for all x ∈ Ui ∩ Uj

gij(x) ◦ gjk(x) ◦ gki(x) = id for all x ∈ Ui ∩ Uj ∩ Uk.

Conversely, given an open cover {Ui} of X and transition functions

gij : Ui∩Uj → GL(r,C), for all i, j satisfying the identities above, then we can

define a vector bundle, E with transition functions gij using the glueing con-

struction as follows: We glue Ui×C
r together by taking the union over all i of

Ui×Cr to get E :=
⊔

(Ui×Cr)/ ∼, where (x, v) ∼ (x, gij(x)(v)), for all x ∈

Ui ∩ Uj , v ∈ C
r.

Example 2.1.2. The simplest example is known as the trivial vector bundle

of rank r, i.e. pr1 : X × Cr → X.

Example 2.1.3. Let Pn be the complex projective space as described in

Example 1.1.6, i.e. Pn = (Cn+1 \ {0})/ ∼ where (z0, . . . , zn) ∼ (λz0, . . . , λzn)

for all λ ∈ C∗. This means each line ℓ ⊂ Cn+1 through the origin corresponds

to a point [ℓ] ∈ Pn. The set

OPn(−1) = {([ℓ], z) ∈ P
n × C

n+1|z ∈ ℓ}
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forms in a natural way a line bundle over Pn. To see this, consider the

projection pr1 : OPn(−1) → Pn, i.e. the projection to the first factor. Let

Pn =
⋃n

i=0 Ui be the standard open cover as described in Example 1.1.6. A

trivialisation of OPn(−1) over Ui is given by ϕi : p−1(Ui)→ Ui × C, (ℓ, z) 7→

(ℓ, zi). The transition maps gij(ℓ) : C → C are given by w 7→ zi

zj
· w, where

ℓ = (z0 : · · · : zn).

Definition 2.1.4. Let F and E be vector bundles of rank r and n respec-

tively, with r ≤ n and F ⊂ E is a submanifold. Then, F is called a subbundle

of E if there exists an open cover {Ui} and transition functions gij : Ui∩Uj →

GL(r,C) for F and hij : Ui ∩ Uj → GL(n,C) for E such that

hij(x) =

(

gij(x) ∗

0 kij(x)

)

.

The quotient bundle G = E/F is described by transition functions kij .

Definition 2.1.5. Let E be a vector bundle on X (with open over {Ui})

and let gij be transition functions of E. The dual bundle, E∗, of E is given

by transition functions

hij(x) := tgij(x)
−1 ∀x ∈ Ui ∩ Uj

Definition 2.1.6. Let p : E → X and p′ : E ′ → X be two complex vector

bundles on X. A holomorphic map f : E → E ′ is called a morphism of

vector bundles if the diagram

E
f //

p
  @

@@
@@

@@
@ E ′

p′~~}}
}}

}}
}}

X

commutes and for each point x ∈ X the map f |Ex
: Ex → E ′

x is a homomor-

phism of vector spaces.

Example 2.1.7. Consider the line bundles p : O(−1)→ P
1 and p′ : O → P

1

on P1 with coordinates (z0 : z1) and standard open cover {U0, U1}. Recall
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from Example 2.1.3 that O(−1) = {([ℓ], v) ∈ P1 × C2|v ∈ ℓ}. We can also

write this as

O(−1) =
{

((z0 : z1), (v0, v1))|(v0, v1) ∈ C · (z0, z1)
}

.

Recall also that O = {((z0 : z1), v) ∈ P
1 × C}.

Let f : O(−1)→ O be the morphism of vector bundles, given by

f((z0 : z1), (v0, v1)) = ((z0 : z1), v0)

Clearly

O(−1)
f //

p
##F

FF
FF

FF
FF

O

p′����
��

��
��

P1

commutes. If (z0 : z1) 6= (0 : 1) ∈ P
1,

O(−1)(z0:z1)
∼= {(z0 : z1)} × C.

via f |O(−1)(z0:z1)
. If (z0 : z1) = (0 : 1),

O(−1)(0:1) = {((0 : 1), (0, v1))|v1 ∈ C}

and f |O(−1)(0:1) = 0.

Hence for all (z0 : z1) ∈ P1, the map

f |O(−1)(z0:z1)
: O(−1)(z0:z1) → O(z0:z1)

is a homomorphism of vector spaces. This verifies that f : O(−1)→ O really

is a morphism of vector bundles.

Let E and E ′ be vector bundles over X with rank r and r′, respectively

and let {Ui} be an open cover of X such that E and E ′ are trivial over Ui

for each i. A morphism f : E → E ′ can be described locally by holomorphic

functions, fi, as follows. For each i, using trivialisations of E and E ′, f

induces maps

Ui ×C
r → Ui × C

r′, (x, v) 7→ (x, fi(x)v)
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where fi : Ui → Matr′×r(C). These holomorphic functions necessarily satisfy

fi(x) ◦ gij(x) = g′ij(x) ◦ fj(x) for all x ∈ Ui ∩ Uj (2.1)

where gij and g′ij are transition functions of E and E ′, respectively. Note

that a set of functions {fi} defines an isomorphism of vector bundles if an

only if fi(x) are invertible matrices for all i and x.

Remark 2.1.8. Let f : L→ L′ be line bundles on P1, with open cover {U0, U1}

and let gij and g′ij be transition functions for L and L′, respectively. The

above definition implies that L and L′ are isomorphic if g′01 = g01 ·
f0
f1

on

U0 ∩ U1, where f0 : U0
∼= C → C∗ and f1 : U1

∼= C → C∗ are arbitrary. For

example, the line bundle O(n) on P1 given by transition functions g01 =
zn
1

zn
0

is isomorphic to the line bundle given by transition functions g′01 = −zn
1

zn
0
.

Definition 2.1.9. Let E be a vector bundle of rank r and L a line bundle

on X and let {Ui} be an open cover of X such that E and L are trivial on

each Ui. Let gij : Ui ∩ Uj → GL(r,C) and hij : Ui ∩ Uj → GL(1,C) = C∗ be

transition functions of E and L, respectively. We define E ⊗ L, the tensor

product of E and L to be the vector bundle given by transition functions

fij : Ui ∩ Uj → GL(r,C), where

fij(x) := hij(x) · gij(x) for all x ∈ Ui ∩ Uj .

Definition 2.1.10. A sequence of morphisms of vector bundles over X

0 −→ E ′ −→ E −→ E ′′ −→ 0

is an exact sequence of vector bundles if

0 −→ E ′
x −→ Ex −→ E ′′

x −→ 0 (2.2)

is an exact sequence of vector spaces for all x ∈ X (See Definition 1.4.11).

The vector bundle E ′ is called a subbundle of E, and E ′′ is called a quotient

bundle of E.
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We also say that an exact sequence

0 −→ E ′ −→ E −→ E ′′ −→ 0

is an extension of E ′′ by E ′.

Remark 2.1.11. Since the dimension of vector spaces is additive on exact

sequences, i.e. given a short exact sequence of vector spaces such as (2.2),

we have dim(Ex) = dim(E ′
x) + dim(E ′′

x). Hence, the rank of vector bundles

is additive as well, i.e. rk(E ′) = rk(E ′)+rk(E ′′) in the notation of Definition

2.1.10.

In the same way as we defined a holomorphic section of a line bundle

(Definition 1.2.15), we can also define a holomorphic section of a vector

bundle.

Definition 2.1.12. Let p : E → X be a vector bundle on X and let U be

an open set in X. A holomorphic map s : U → E is called a holomorphic

section of E over U if p ◦ s = idU . The set of all holomorphic sections is

denoted Γ(U,E) and U 7→ Γ(U,E) forms a sheaf called the sheaf of sections

of the vector bundle. Sections over X are called global sections of E. Global

sections can be added and multiplied with a scalar, so the space of global

sections is in fact a vector space. It will be denoted by H0(X,E) (or H0(E)

if it clear which X we are referring to) or Γ(X,E).

Definition 2.1.13. Let f : E ′ → E be a morphism of vector bundles. This

induces a linear map of spaces of sections H0(f) : H0(E ′)→ H0(E), defined

by H0(f)(s′) := f ◦ s′.

Let us now examine the correspondence between locally free sheaves

(Definiton 1.3.20) and vector bundles.

Theorem 2.1.14. Sending a holomorphic vector bundle to its sheaf of sec-

tions gives a bijection between the set of holomorphic vector bundles of rank

r and the set of locally free OX-modules of rank r.
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Proof. ([Hu] Proposition 2.36) Recall by Definition 1.3.20 that a locally free

OX-module of rank r is a sheaf F of OX-modules on X which is locally

isomorphic to O⊕r
X . Consider a vector bundle p : E → X of rank r over X.

Let E denote the sheaf of sections of E. Because X×Cr has sheaf of sections

O⊕r
X , E is locally free since E is locally isomorphic to X ×Cr.

Conversely, let E be a locally free sheaf of rank r. If we have chosen

trivialisations ϕi : E|Ui
∼= O⊕r

Ui
, of E then the transition functions

gij := ϕi ◦ (ϕ−1
j )|Ui∩Uj

: O⊕r
Ui∩Uj

∼= O⊕r
Ui∩Uj

are given by multiplication with an invertible matrix of holomorphic functions

on Ui ∩ Uj . Define the vector bundle, E, on X with an open cover {Ui}, to

be the vector bundle given by transition functions gij. It is easy to see that

these two constructions are inverse to each other.

Notation : We will usually denote by E the sheaf corresponding to a

vector bundle E.

Remark 2.1.15. Using Definition 2.1.12, it is not hard to show that we have

an exact sequence in the category of coherent sheaves

0 −−−→ O(−1)
f

−−−→ O −−−→ CP −−−→ 0

where f : O(−1)→ O is the morphism on P1 as described in Example 2.1.7

and CP is the skyscraper sheaf at P = (0 : 1) with stalk C, i.e. if U is an

open set of P1 containing P , then CP (U) = C. If U does not contain P , then

CP (U) = 0. In particular, f is a monomorphism in Coh(P1), the category of

coherent sheaves on P1 but not an epimorphism, so it is not an isomorphism.

On the other hand, it can be shown that f is a monomorphism and an

epimorphism in the category of vector bundles on P1, however it is not an

isomorphism. This implies that f is not a strict morphism in the category

of vector bundles. Examples like these serve as a motivation to extend the

category of vector bundles to the category of coherent sheaves.
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Remark 2.1.16. Let f ∈ Hom(E ′, E) be a morphism of vector bundles on a

smooth curve C which is injective on generic fibres, i.e. there exists an open

dense subset U ⊂ C such that

fx : E ′
x → Ex

is injective for all x ∈ U .

The kernel of f is a subsheaf of the locally free sheaf E ′, hence it is locally

free (See Remark 1.3.22) But our assumption implies that ker fx = 0 for all

x ∈ U , hence ker f = 0 and we obtain an exact sequence

0 // E ′
f // E

g // F // 0

where F is a coherent sheaf on C. By modding out the torsion of F , we

obtain the following commutative diagram with exact rows:

0 // E ′
f // E

g // F //

��

0

0 // ker g′
f ′

// E
g′

// G // 0

where G := F/ tors(F). Because F/ tors(F) is locally free (see Remark

1.3.22), f ′ : ker g′ → E is a subbundle of E. The process described above is

referred to as saturation.

2.1.1 Cohomology

Let E be a vector bundle and E be its sheaf of holomorphic sections (recall

that these are in bijection from Theorem 2.1.14). We can define cohomology

groups, H i(X,E) := H i(E), using Čech cohomology described in Section

1.3.2. Therefore given a short exact sequence of vector bundles over X as

follows

0 −−−→ E ′ f
−−−→ E

g
−−−→ E ′′ −→ 0,
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using short exact sequences of its sheaf of holomorphic sections E , we get an

induced long exact cohomology sequence as follows

0→ H0(X,E′)→ H0(X,E)→ H0(X,E ′′)→ H1(X,E ′)→ · · ·

The exactness of

0 −−−→ H0(X,E ′)
H0(f)
−−−→ H0(X,E)

H0(g)
−−−→ H0(X,E′′) (2.3)

can be shown easily by proving that H0(f) is injective and im(H0(f)) =

ker(H0(g)). Recall first that

0 // E ′
f // E

g // E ′′

is exact if and only if

0 // E ′
x

fx // Ex
gx // E ′′

x

is exact for all x ∈ X. The fact that H0(f) is injective follows from 0 = s ∈

H0(X,E) if and only if s(x) = 0 for all x ∈ X.

Let us now show that im(H0(f)) = ker(H0(g)). Since H0(g◦f) = H0(g)◦

H0(f) = 0, it follows, using Defintion 2.1.13 that im(H0(f)) ⊂ ker(H0(g)).

Now assume s ∈ ker(H0(g)) ⊂ H0(X,E). We know from

0 // E ′
x

fx // Ex
gx // // E ′′

x

being exact that if gx(s(x)) = 0, then s(x) ∈ fx(E
′
x). Because f : E ′ →

im(f) is an isomorphism of vector bundles this shows that s factors through

f : E ′ → E and so s ∈ im(H0(f)), i.e. we have ker(H0(g)) ⊂ im(H0(f)).

The following is a counter example to H0(g) being surjective.

Example 2.1.17. Consider a morphism of line bundles f : O(−2) → O on

P1. Let U = {U0, U1} be the standard open cover of P1 and let g01 =
z20
z21

and

g′01 = 1 be transition functions of O(−2) and O respectively. Consider f to
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be the morphism given locally by fi, where f0 : U0 → C and f1 : U1 → C are

given by

f0(z0 : z1) =
z1
z0

and

f1(z0 : z1) =
z0
z1

Clearly these are holomorphic functions on U1 and U0, respectively. These

holomorphic functions satisfy

g′01(x)f1(x) = f0(x)g01(x), ∀x ∈ U0 ∩ U1

Note that f |O(−2)(z0:z1)
is an isomorphism for all (z0 : z1) 6= (0 : 1) or (1 : 0).

Using this morphism, we have an exact sequence in the category of coherent

sheaves

0 −−−→ O(−2)
f

−−−→ O −−−→ CP1 ⊕CP2 −−−→ 0

where P1 = (0 : 1) and P2 = (1 : 0) and CPi
is the skyscraper sheaf at Pi with

stalk C for i = 1, 2. Now taking global sections we get an exact sequence

0 −−−→ H0(O(−2))
H0(f)
−−−→ H0(O)

H0(g)
−−−→ H0(CP1 ⊕CP2) −−−→ · · ·

where H0(O(−2)) = 0 (this will be proved in Lemma 2.1.30 (a)). This gives

us an exact sequence

0 −−−→ H0(O)
H0(g)
−−−→ H0(CP1 ⊕ CP2) −−−→ H1(O(−2)) −−−→ 0

where H0(O) ∼= C and H0(CP1 ⊕ CP2) = H0(CP1)⊕H
0(CP2) = C⊕ C, and

so H0(g) could not be sujective.

Since we get the exact sequence (2.3) above, we know that the global

section functor is left exact. The dimension of H i(X,E) will be denoted

hi(X,E). In the case of a curve C the cohomology groups H i(C,E), vanish

for all i > 1, where 1 is the dimension of C, i.e. only the cohomology groups

H0(C,E) and H1(C,E) can be nonzero.
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2.1.2 Ext groups

If E and E ′ are vector bundles over X, we denote by HomX(E,E ′) (or

Hom(E,E ′) if it is clear which X we are referring to) the vector space of

vector bundle morphisms. For a fixed E, Hom(E, ·) is a left exact covariant

functor from the category of vector bundles to the category of vector spaces,

i.e. given a short exact sequence of vector bundles

0 −→ F ′ −→ F −→ F ′′ −→ 0

we get another exact sequence in which the last map is not surjective in

general

0 −−−→ Hom(E,F ′) −−−→ Hom(E,F ) −−−→ Hom(E,F ′′) (2.4)

We know from Theorem 1.4.67 that we can extend our short exact sequence

(2.4) to a long exact sequence as follows:

0 −−−→ Hom(E,F ′) −−−→ Hom(E,F ) −−−→ Hom(E,F ′′)

−−−→ Ext1(E,F ′) −−−→ Ext1(E,F ) −−−→ · · ·

where Exti(E, ·) are the right derived functors of Hom(E, ·). So in particular

we have Ext0(E, ·) = Hom(E, ·). We have the following proposition to see

the relationship between the cohomology groups H i and the Ext groups.

Proposition 2.1.18. (a) For any locally free sheaf L and any sheaf M on

a complex manifold X, we have:

Exti(L ,M ) ∼= H i(L ∗ ⊗M ) for all i ≥ 0.

(b) For any vector bundle E on a complex manifold X, we have:

Exti(OX , E) ∼= H i(E) for all i ≥ 0.

Similarly we have:

Exti(E,OX) ∼= H i(E∗) (where E∗ is the dual bundle of E) for all i ≥ 0.

Proof. ([H] Proposition III.6.3) To begin with, we will prove the first state-

ment of part (b):
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First let us examine the case where i = 0. Let f ∈ Hom(O, E), a homo-

morphism of vector bundles such that the following diagram commutes

X × C
f //

pr1 ##G
GG

GG
GG

GG
E

p
~~~~

~~
~~

~~

X

.

Let s : X → E be a holomorphic section of E, i.e. p ◦ s = idX . Define two

linear maps

α : Hom(O, E)→ H0(E)

and

β : H0(E)→ Hom(O, E)

as follows: Define α(f)(x) := f(x, 1) and β(s)(x, λ) := λ · s(x).

We see that β(α(f)) = f as follows:

β(α(f))(x, λ) = λ · (α(f)(x)) = λ · f(x, 1) = f(x, λ), where the last

equality uses the fact that f is linear on fibres.

Similarly we obtain α(β(s))(x) = β(s)(x, 1) = s(x), so α(β(s)) = s.

Hence α and β are inverses of one another and we get

Hom(O, E) ∼= H0(E).

Now we want to show that this isomorphism is functorial, i.e. that the fol-

lowing diagram commutes for all ϕ : E → F , morphisms of vector bundles

Hom(O, E)
αE−−−→ H0(E)

Hom(O,ϕ)





y





y
H0(ϕ)

Hom(O, F )
αF−−−→ H0(F )

Now if f ∈ Hom(O, E), then H0(ϕ)(αE(f))(x) = ϕ(f(x, 1)) (as in gen-

eral H0(α)(s)(x) = α(s(x)) for all s ∈ H0(E)). On the other hand we get

αF (Hom(O, ϕ)(f))(x) = αF (ϕ ◦ f)(x) = (ϕ ◦ f)(x, 1) = ϕ(f(x, 1)).

This allows us to conclude that since Exti(O,−) is the i-th derived func-

tor of Hom(O,−) and H i(−) is the i-th derived functor of H0(−) that

Exti(O, E) ∼= H i(E) for all i ≥ 0 and for any vector bundle E on X.
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(a) Let us look at the case where i = 0. So we want Hom(L ,M ) ∼=

H0(L ∗ ⊗M ).

We know Hom(L ⊗O,M ) ∼= Hom(L ,M ). From [H] Exercise II.5.1 (b)

and (c) we get Hom(L ⊗O,M ) ∼= Hom(O,L ∗ ⊗M ). Then from the first

statement of (b) above we get

Hom(L ,M ) ∼= H0(L ∗ ⊗M ).

Now, Exti(L ,−) is the i-th derived functor of Hom(L ,−) and H i(−) is

the i-th derived functor of H0(−). Hence, Exti(L ,M ) ∼= H i(L ∗ ⊗M ) for

all i ≥ 0.

(b) The statement Exti(E,O) ∼= H i(E∗) is a special case of (a), where

M = O and the vector bundle E corresponds to the locally free sheaf L .

The notion of a degree of a line bundle was introduced in Section 1.2.

We can extend this to the degree of a vector bundle. To do so we must first

define the determinant line bundle.

Definition 2.1.19. Given an open cover {Ui} of X and a vector bundle E

on X with transition functions gij , we have the following:

gij : Ui ∩ Uj //

det(gij) ''OOOOOOOOOOO
GL(n,C)

det
��

GL(1,C)

with det being the determinant of the matrix and det(gij) being the induced

map on the transition functions gij . The determinant line bundle of E,

denoted detE is given by transition functions hij where

hij(x) := det gij(x) ∈ GL(1,C), for all x ∈ Ui ∩ Uj .

Let us see that this really is a line bundle. So we have hij : Ui ∩ Uj →

GL(1,C). We must check the following conditions:

hij(x) · hji(x) = 1 for all x ∈ Ui ∩ Uj
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hij(x) · hjk(x) · hki(x) = 1 for all x ∈ Ui ∩ Uj ∩ Uk.

We know

gij(x) ◦ gji(x) = id for all x ∈ Ui ∩ Uj (2.5)

gij(x) ◦ gjk(x) ◦ gki(x) = id for all x ∈ Ui ∩ Uj ∩ Uk. (2.6)

Applying det to (2.5) we get

det(gij(x) ◦ gji(x)) = det(id).

which gives

det(gij(x)) · det(gji(x)) = 1.

Similarly applying det to (2.6) we get

det(gij(x) ◦ gjk(x) ◦ gki(x)) = det(id)

which gives

det(gij(x)) · det(gjk(x)) · det(gki(x)) = 1.

and so the functions hij are really transition functions of a line bundle.

This now allows us to define the degree of a vector bundle as follows.

Definition 2.1.20. The degree degE ∈ Z of a vector bundle, E, is the degree

of its determinant line bundle detE (See Definition 1.2.18 for the definition

of the degree of a line bundle).

If E lies in an exact sequence of holomorphic vector bundles on X, with

open cover {Ui} as follows:

0→ E ′ → E → E ′′ → 0

with transition functions of E ′, E and E ′′ being g′ij, gij, g
′′
ij, respectively, such

that all three bundles are trivial on each Ui, then from Definition 2.1.4, we

have the following

gij(x) =

(

g′ij(x) ∗

0 g′′ij(x)

)

.
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and taking determinants we get

det(gij) = det(g′ij) · det(g′′ij)

and so from Defintion 1.2.10 we get an isomorphism

detE ∼= detE ′ ⊗ detE ′′.

Since deg : Pic(X)→ Z is a homomorphism, we get degE = degE ′+degE ′′.

In other words, degree is additive on exact sequences.

As a special case, if a vector bundle, E = L1 ⊕ L2, is the direct sum of

two line bundles L1 and L2, then we have

0 // L1 i1

// E pr2
//// L2

// 0

with i1 being the natural inclusion and pr2 being the projection to the second

factor, and so we get degE = degL1 + degL2.

Remark 2.1.21. Let E be a vector bundle or rank r and L be a line bundle

over a complex manifold X, with an open {Ui} of X such that E and L

are trivial on each Ui. Let E and L have transition functions gij and hij ,

respectively. If we tensor E with L, we know from Definition 2.1.9 that the

transition functions of E ⊗ L is

kij(x) := hij(x) · gij(x) for all x ∈ Ui ∩ Uj .

Taking det we have det(hij(x) · gij(x)) = hrij(x) · det gij(x). From this we get

deg(E ⊗ L) = r degL + degE. In particular if E is a vector bundle of rank

2 we have deg(E ⊗ L) = degE + 2 degL.

For this reason, when considering vector bundles of rank 2, it is enough to

consider vector bundles of degree −1 or 0, (or indeed vector bundles of any

even and odd degree), then by tensoring with a line bundle of appropriate

degree we get all other degrees. We call this the “tensor product trick”.

More generally, if E and E ′ are vector bundles over a complex manifold

X of rank r and r′ respectively, then deg(E ⊗ E ′) = r′ degE + r degE ′.
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Definition 2.1.22. An exact sequence of vector bundles

0→ E ′ → E → E ′′ → 0

splits if and only if there exists a morphism f : E ′′ → E for which the

composition E ′′
f // E // E ′′ is an isomorphism, or equivalently if there

exists a morphism g : E → E ′ for which the composition E ′ →֒ E
g
−→ E ′ is

an isomorphism.

In this case, either of the maps f or g is called a splitting of the sequence.

If the sequence above splits then E ∼= E ′ ⊕ E ′′.

Now consider, on any curve, a short exact sequence of vector bundles

E : 0 −−−→ M
α

−−−→ E
β

−−−→ L −−−→ 0.

By applying F = Hom(L,−) to this sequence we get the following morphism:

Hom(L,L)
δ

−−−→ Ext1(L,M)

Definition 2.1.23. The image under the coboundary map δ of the identity

of L, idL ∈ Hom(L,L), which we will denote by

δ(idL) ∈ Ext1(L,M) ∼= H1(L∗ ⊗M),

is called the extension class of E.

By exactness of

Hom(L,E)
F (β)
−−−→ Hom(L,L)

δ
−−−→ Ext1(L,M),

if δ(idL) = 0, then there exists a morphism f : L → E for which the com-

position idL = β ◦ f : L → L, i.e. the sequence E splits. Moreover, if E

splits, there exists f : L → E such that idL = β ◦ f . Because the compo-

sition F (β) ◦ δ is zero, we have δ(idL) = 0. Hence we have the following

proposition:
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Proposition 2.1.24. If Ext1(L,M) ∼= H1(L∗ ⊗M) = 0, then every exact

sequence E splits.

Remark 2.1.25. ([W] Section 3.4) For each α ∈ Ext1(E ′′, E ′) there exists an

extenstion

0→ E ′ → Eα → E ′′ → 0 (2.7)

with a vector bundle, Eα, in such a way that α is the extension class of (2.7).

Moreoever, Eα ∼= Eβ if and only if there exists λ ∈ C∗ such that α = λβ.

2.1.3 Riemann-Roch formula for curves

We have a very useful tool, called the Riemann-Roch formula, which tells

us alot about the cohomology groups, H0(E) and H1(E), once we know the

rank and degree of the vector bundle E. In order to state the Riemann-Roch

formula, we need to know what the genus of a curve is. The genus of a

complex manifold is an important topological invariant. Let us give a precise

definition in the case of a curve.

Definition 2.1.26. The genus, g, of a curve, C, is

g := h1(OC).

The one-dimensional projective space, P
1, has g = 0. An elliptic curve

C/Λ (as described in Example 1.1.7) has g = 1.

We can now give the Riemann-Roch formula for curves as follows: If E

is a vector bundle, of rank r on a curve of genus g, then:

h0(E)− h1(E) = degE + r(1− g).

In addition to the Riemann-Roch formula, one of the other major tools we

have in dealing with cohomology is Serre duality. First we need to define the

canonical line bundle on a curve, C.

Definition 2.1.27. Let C be a curve, i.e. a one-dimensional complex man-

ifold. Let {Ui} be an open cover of C and let ϕi : Ui → C be coordinate
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maps. Using the notation of Remark 1.1.3, we know Vij ⊂ C for all i, j, since

C is a curve. Recall that ϕi ◦ ϕ
−1
j =: ψij : Vji → Vij.

The canonical line bundle, KC of C is given by transition functions, gij

where

gij(x) := ψ′
ij(ϕj(x)) ∈ GL(1,C), for all x ∈ Ui ∩ Uj ,

i.e. gij is the derivative of the change of coordinate maps of C. Let us check

that this defines a line bundle as outlined in Definition 1.2.6. So we have

gij : Ui ∩ Uj → GL(1,C) = C∗. We must check that

gij(x) · gji(x) = 1 for all x ∈ Ui ∩ Uj . (2.8)

gij(x) · gji(x) · gki(x) = 1 for all x ∈ Ui ∩ Uj ∩ Uk. (2.9)

We know the change of coordinate maps of C satisfy the above identities, i.e.

ψij(ψji(z)) = z for all z ∈ Vij

and

ψij(ψjk(ψki(z))) = z for all z ∈ Vij ∩ Vik.

(see again Remark 1.1.3) so taking derivatives of these we get

ψ′
ij(ψji(z)) · ψ

′
ji(z) = id

where z = ϕi(x), with x ∈ Ui ∩ Uj . This gives

ψ′
ij(ψji(ϕi(x)) · ψ

′
ji(ϕi(x)) = id

since by definition, ψij(ϕi(x)) = ϕj(x), we have (2.8) (by definition of gij).

Similarly we can show (2.9) and so the gij really define a line bundle, KC .

Example 2.1.28. Let C = P1 and let {U0, U1} be the standard open cover of

P1 and z = (z0 : z1), a point in P1. Using the complex structure as outlined

in Example 1.1.6, we know that the change of coordinate maps for P1 are

ψ01(z) = 1
z

and so KP1 is given by transition functions g01(z) = (1
z
)′ = −z−2.

From Example 1.2.9 and Remark 2.1.8 we know this is isomorphic to the line

bundle OP1(−2).
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Outlined below is some information about KC is in the case of a curve:

C = P
1 : KC = OP1(−2), deg(KC) = −2

C = elliptic curve : KC = OC , deg(KC) = 0

C = curve of genus g ≥ 2 : deg(KC) = 2g − 2.

The following proposition outlines Serre duality, though it will not be

proved as the proof is too involved for this paper (further details can be

found in [H] Section III.7).

Proposition 2.1.29. (Serre duality) Let C be a smooth projective curve

and E be a vector bundle on C. Let KC be the canonical line bundle on C.

Then there are isomorphisms that are functorial in E

H0(C,E) ∼= H1(C,KC ⊗E
∗)∗.

and

H1(C,E) ∼= H0(C,KC ⊗E
∗)∗.

In particular it follows that H0(C,E) and H1(C,KC ⊗ E∗) have the same

dimension.

Lemma 2.1.30. Let L be a line bundle on a curve, C, of genus g. Then we

have the following:

(a) H0(L) = 0 if degL < 0.

(b) H1(L) = 0 if degL > 2g − 2.

(c) L ∼= O if degL = 0 and H0(L) 6= 0.

Proof. (a) Assume H0(L) 6= 0, so we have s ∈ H0(L), s 6= 0 with div(s) =
∑

P∈C ordP (s) · P . Now s is a holomorphic section so ordP (s) ≥ 0 for all

P ∈ C. Hence, deg(div(s)) =
∑

ordP (s) ≥ 0. Now O(div(s)) ∼= L. But

degL < 0 and deg(div(s)) ≥ 0 so we have a contradiction. Hence, H0(L) = 0.

(b) From Serre duality we know H1(L) ∼= H0(L∗ ⊗KC)∗. Now deg(L∗ ⊗

KC) = 2g − 2− degL. Since degL > 2g − 2, we get deg(L∗ ⊗KC) < 0 and

from part (a) above we get H0(L∗ ⊗KC) ∼= H1(L) = 0.
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(c) Let s ∈ H0(L) be a nonzero section in L. Let D = div(s), the

L ∼= O(D). We know that

div(s) =
∑

P

ordP (s) · P.

Since we know degL = 0, then we have
∑

P ordP (s) = 0. This implies that

ordP (s) = 0 for all P ∈ C. This in turn implies that D = 0. So we have

L = O(D) ∼= O.

Lemma 2.1.31. If E is an indecomposable vector bundle of rank 2 on a

smooth projective curve, C, then every line subbundle L ⊂ E satisfies

2 degL ≤ degE + 2g − 2

Proof. ([Mu] Lemma 10.40) Let M be the quotient line bundle E/L. This

gives us the following short exact sequence:

0→ L→ E → M → 0

which corresponds to an element in Ext1(M,L) ∼= H1(M∗ ⊗ L). Now since

E is indecomposable, this sequence cannot split and hence H1(M∗ ⊗ L) 6= 0

by Proposition 2.1.24. By Serre duality, this implies that 0 6= H0((M∗ ⊗

L)∗ ⊗ KC)∗ = H0(M ⊗ L∗ ⊗ KC)∗. This in turn implies that deg(M ⊗

L∗ ⊗ KC) = degM − degL + 2g − 2 ≥ 0 from Lemma 2.1.30 (a). Now

from the short exact sequence above we know that degE = degM + degL,

i.e. degM = degE − degL. Hence we get

degE − degL− degL+ 2g − 2 ≥ 0

From this, we get the inequality in the lemma.

Lemma 2.1.32. If E is a vector bundle on a curve C of genus g, then the

degree of its subbundles F ⊂ E is bounded above.
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Proof. ([Mu], Corollary 10.9) Since the global sections functor is left exact,

for each subbundle F ⊂ E we get

H0(F ) ⊂ H0(E)

This implies that h0(F ) ≤ h0(E). Now by Riemann-Roch we know

h0(F )− h1(F ) = deg(F ) + rk(F ) · (1− g).

deg(F ) = h0(E)− rk(F ) · (1− g)− h1(F )

Now if g = 1, we see that deg(F ) = h0(E)− h1(F ) and since h1(F ) ≥ 0,

we get deg(F ) ≤ h0(E).

If g = 0, then deg(F ) = h0(E)− rk(F )− h1(F ) and since rk(F ) ≥ 0 and

h1(F ) ≥ 0, we see that deg(F ) ≤ h0(E).

If g ≥ 2, deg(F ) = h0(E) + rk(F ) · (g − 1) − h1(F ) ≤ h0(E) + rk(E) ·

(g − 1) − h1(F ) (since rk(F ) ≤ rk(E)). Again, since h1(F ) ≥ 0, we get

deg(F ) ≤ h0(E) + rk(E) · (g − 1). Hence we see that in any case the degree

of F ⊂ E is bounded above.

2.2 Vector bundles on P
1

Before we move on to vector bundles on an elliptic curve (i.e. a curve of genus

one), it makes sense to look at vector bundles on a curve of genus zero (P1).

Let us now restate Lemma 2.1.30 in the case of P1, where genus g = 0, to

see how the cohomology of line bundles on P1 is particularly simple.

Lemma 2.2.1. Let L be a line bundle on a P1. Then we have the following:

(a) H0(L) = 0 if degL ≤ −1.

(b) H1(L) = 0 if degL ≥ −1.

(c) L ∼= O if degL = 0 and H0(L) 6= 0.

By Riemann-Roch we also have,

h0(L)− h1(L) = degL+ 1.
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Lemma 2.2.2. deg : Pic(P1)→ Z is an isomorphism.

Proof. ([G] Lemma 6.3.11) The morphism deg is clearly surjective: for

any n ∈ Z, there is a line bundle in Pic(P1) of degree n, namely O(n)

(See Example 1.2.9). So we must now show that deg is injective, i.e. that

ker(deg) = O. We know that ker(deg) = {L ∈ Pic(P1)| degL = 0}. Now if

degL = 0, L ∈ Pic(P1), then by Riemann-Roch we have h0(L) − h1(L) = 1.

Hence H0(L) 6= 0 and so by Lemma 2.2.1 (c) we know L ∼= O, i.e. deg is

injective and thus deg : Pic(P1)→ Z is an isomorphism.

We have a classification for all vector bundles on P1 as follows:

Lemma 2.2.3. Every rank 2 vector bundle on P1 is isomorphic to a direct

sum of two line bundles

Proof. ([Mu], Lemma 10.30) Let E be a rank 2 vector bundle on P
1. Ten-

soring with a line bundle if necessary, it is enough to assume that degE = 0

or −1. First, the Riemann-Roch formula tells us that h0(E) − h1(E) =

deg(E) + 2. Since degE = 0 or −1 we have H0(E) 6= 0. From Proposition

2.1.18, this gives us a nonzero morphism of sheaves f : O → E. So we get

the following short exact sequence:

0 // ker f // O
f // im f // 0 .

Because ker f ⊂ O and im f ⊂ E, both are locally free (see Remark 1.3.22).

Now rk(O) = 1 = rk(ker f) + rk(im f). If rk(ker f) = 1, then we would

have rk(im f) = 0, which would imply that f = 0, a contradiction. So

rk(ker f) = 0. This implies that ker f = 0, i.e. f is a monomorphism in the

category of coherent sheaves. Therefore, we can apply saturation (Remark

2.1.16) to get a commutative diagram as follows:

0 // O

α

��

f // E
g // F //

��

0

0 //M
f ′

// E
g′

// L // 0
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with M ⊂ E, a line subbundle and L := E/M , a line bundle. Now since

f 6= 0, then we know 0 6= α ∈ Hom(O,M) = H0(M). This implies (from

Lemma 2.2.1 (a)) that deg(M) ≥ 0. Now degE = degL + degM , hence

deg(L∗ ⊗M) = degM − degL = − degE + 2 degM ≥ − degE ≥ 0. From

Lemma 2.2.1 (b), we get H1(L∗ ⊗M) = 0. By Proposition 2.1.24, therefore,

the sequence 0→M → E → L→ 0 splits.

Grothendieck’s Theorem 2.2.4. Every vector bundle on P1 is isomorphic

to a direct sum of line bundles

Proof. ([Mu] Theorem 10.31) Let E be a vector bundle of rank r on P1. Proof

is by induction on the rank r ≥ 2 of E, starting with the previous lemma.

Serre’s Theorem ([H] II.5.17) tells us that there exists a line subbundle in E.

Now let M ⊂ E be a line subbundle whose degree, m = degM , is maximal

among line subbundles of E (Lemma 2.1.32). Now F := E/M is a vector

bundle of rank r − 1.

Claim: Every line subbundle L ⊂ F has degL ≤ m.

Now we have a short exact sequence as follows:

0→M → E → F → 0

By considering the preimage L̃ ⊂ E of L under the quotient morphism

E → F we get a diagram as follows:

0 //M // E // F // 0

0 //M // L̃
?�

OO

// L
?�

OO

// 0

Clearly L̃ is a rank 2 vector bundle, and we see deg L̃ = m + degL. By

Lemma 2.2.3, we know L̃ ∼= L1 ⊕ L2 for some line bundles L1 and L2 on

P1. Now deg(L̃) = deg(L1) + deg(L2) so one of L1 or L2 must have deg

at least deg(L̃)/2. Let N denote that line subbundle, of degree at least

deg L̃/2. Because N is a subbundle of E, as well as our choice of M we get

m ≥ degN ≥ (deg L̃)/2 = m+degL
2

and the claim follows easily from this.
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By the inductive hypothesis, we know the quotient bundle F is isomorphic

to a direct sum F = L1 ⊕ · · · ⊕ Lr−1 of line bundles and the claim gives us

degLi ≤ m. Since deg(L∗
i ⊗M) = degM − degLi = m− degLi ≥ 0, we get

H1(L∗
i ⊗M) = 0 for each i. It follows from Proposition 2.1.24 that the exact

sequence

0→M → E →
r−1
⊕

i=1

L1 → 0

splits.

Definition 2.2.5. A vector bundle, E, is called decomposable if it is isomor-

phic to the direct sum E1

⊕

E2 of two nonzero vector bundles; otherwise, E

is called indecomposable.

By definition of decomposability, every vector bundle is the direct sum

of indecomposable ones. Therefore, it suffices to know the indecomposable

vector bundles on a curve in order to know them all. We have seen that all

vector bundles on rational curves are the direct sum of line bundles. As well

as the notion of an indecomposable vector bundle, we also have the notion

of a simple vector bundle.

Definition 2.2.6. A vector bundle E is simple if its only endomorphisms

are scalars, EndE = C.

A simple vector bundle is necessarily indecomposable. To see this let us

start with a decomposable vector bundle E⊕F . Consider f : E⊕F → E⊕F ,

where f = idE ⊕0F where idE is the identity map on E and 0F is the zero

map on F . Clearly this morphism is not a multiple of the identity and so

End(E ⊕ F ) 6= C, i.e. F is not simple.

Note that the converse is not true, i.e. an indecomposable vector bundle

is not necessarily simple (This can be seen by a counter example, Example

2.3.3).
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2.3 Rank two vector bundles on an elliptic

curve

We are now ready to look at the case of a nonsingular curve of arithmetic

genus one (i.e. an elliptic curve). Atiyah’s paper of 1957 ([At]) provided

us with an answer to this case. We have already seen in Lemma 2.2.2

that there is exactly one line bundle on P
1 for every degree. In particu-

lar Pic0(P1) = {O}, where Pic0(P1) denotes the set of line bundles of degree

0 on P
1. However, it turns out on an elliptic curve, C, that Pic0(C) is in

bijection to C (Theorem 2.3.7) and so on elliptic curves there are more vec-

tor bundles in the sense that nontrivial extensions appear. In this section we

will be concentrating on rank 2 vector bundles on an elliptic curve. We will

now give a classification of all indecomposable rank 2 vector bundles on an

elliptic curve C.

First let me return to the Riemann-Roch formula for a vector bundle E,

this time looking at a curve of genus 1, i.e.

h0(E)− h1(E) = degE

Note that every line bundle, L, on C satisfies:

h0(L)− h1(L) = degL

Moreover, we have the following lemma (as a particular case of Lemma

2.1.30):

Lemma 2.3.1. Let L be a line bundle on an elliptic curve. Then we have

the following:

(a) H0(L) = 0 if degL < 0.

(b) H1(L) = 0 if degL > 0.

(c) If degL = 0 and L 6∼= O, then H0(L) = H1(L) = 0.

Let E(r, d) denote the set of isomorphism classes of indecomposable vector

bundles of rank r and degree d over C, an elliptic curve.
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Theorem 2.3.2. (a) There exists a vector bundle Er ∈ E(r, 0), for each

integer r ≥ 1, unique up to isomorphism, with H0(Er) 6= 0. Moreover, we

have a nonsplit exact sequence:

0→ OC → Er → Er−1 → 0

(b) Let E ∈ E(r, 0), then E ∼= Er ⊗ L, where L is a line bundle of degree

zero, unique up to isomorphism.

Proof. See [At] Theorem 5.

Example 2.3.3. The bundles Er of Theorem 2.3.2 are sometimes called the

Atiyah bundles. For r ≥ 2, they are examples of indecomposable vector

bundles which are not simple. Let us prove now that E2 is not simple.

We know E2 sits in an exact sequence as follows:

0 // OC
f // E2

// OC // 0

Applying the contravariant functor Hom(−, E2) to this sequence, we get

0 // Hom(O, E2) // Hom(E2, E2)
β // Hom(O, E2)

Now Hom(O, E2) ∼= H0(E2) from Proposition 2.1.18. From our assump-

tion on E2, we know H0(E2) 6= 0, i.e. h0(E2) ≥ 1. Let idE2 denote id ∈

Hom(E2, E2). We know β(idE2) = f 6= 0. This implies β 6= 0. So we get the

following short exact sequence:

0→ Hom(O, E2)→ Hom(E2, E2)→ im(β)→ 0

Since β 6= 0, we know that dim(im(β)) ≥ 1. Now since dim is addi-

tive on exact sequences, we have dim(Hom(E2, E2)) = dim(Hom(O, E2)) +

dim(im(β)) ≥ 2. Hence by the definition of a simple vector bundle (Definition

2.2.6), we know that E2 is not simple.

Let us now classify all indecomposable rank 2 vector bundles on an elliptic

curve. We first consider the case of odd degree.

73



Proposition 2.3.4. On a smooth curve, C, of genus 1, given a line bundle

L of odd degree, there exists, up to isomorphism, a unique indecomposable

rank 2 vector bundle E with detE ∼= L.

Proof. ([M] Proposition 10.47) From Remark 2.1.21, it is enough to consider

the case degL = 1. Since degL = 1, degL∗ = −1 (as L∗ is the inverse of the

line bundle L in the Picard group and deg : Pic(C)→ Z is a homomorphism

of groups) and from Lemma 2.3.1 then, we know that H0(L∗) = 0. Riemann-

Roch then tells us that H1(L∗) is 1-dimensional. Now H1(L∗) ∼= Ext1(L,O)

by Proposition 2.1.18 (c) and so from Remark 2.1.25 we know there is, up to

isomorphism, just one vector bundle E which sits in a nonsplit short exact

sequence as follows

0→ O → E → L→ 0. (2.10)

Claim: h0(E) = 1.

Since H0(L) 6= 0, then we know Hom(O, L) 6= 0 and it follows that L

contains O as a subsheaf. Consider the following diagram

0 // O // E
f // L // 0

0 // O // E ′ //?�

OO

O //?�

β

OO

0

(2.11)

where E ′ ⊂ E by the inverse image of this subsheaf, O. Now consider

the dual of the above diagram

0 // L∗
� _

ϕ

��

// E∗ //

��

O // 0

0 // O // E ′∗ // O // 0

(2.12)

Let us show that ϕ : L∗ → O is a monomorphism. Because kerϕ ⊂ L∗ and

imϕ ⊂ O, both are locally free (see Remark 1.3.22). So we get an exact

sequence of locally free sheaves

0→ kerϕ→ L∗ → imϕ→ 0.
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Now rk(L∗) = 1 = rk(kerϕ) + rk(imϕ). If rk(kerϕ) = 1, then we would

have rk(imϕ) = 0, which would imply that ϕ = 0, a contradiction. So

rk(kerϕ) = 0. This implies that kerϕ = 0, i.e. ϕ is a monomorphism in the

category of coherent sheaves.

Now note that the first row of (2.11) splits if and only if the first row of

(2.12) splits, and the second row of (2.11) splits if and only if the second row

of (2.12) splits. Applying Hom(O,−) = H0(−) to (2.12) we get the following

commutative diagram with exact rows

0 // H0(L∗)

��

// H0(E∗) //

��

H0(O)
δ3 // H1(L∗) //

H1(ϕ)
��

· · ·

0 // H0(O) // H0(E ′∗) // H0(O)
δ4 //H1(O) // · · ·

. (2.13)

Now since ϕ : L∗ →֒ O is a monomorphism we have a short exact sequence

as follows:

0 // L∗
ϕ // O // C // 0

Clearly rk(C ) = 0, i.e. C is a torsion sheaf. Hence H1(C ) = 0. Now apply

H0(−) to the short exact sequence above to get

0→ H0(O)→ H0(C )→ H1(L∗)→ H1(O)→ 0

Hence H1(ϕ) : H1(L∗)→ H1(O) is a surjection between two vector spaces of

the same dimension, hence an isomorphism (and in particular an injection).

Now consider id ∈ Hom(O,O) = H0(O). We know by assumption that

the top row of (2.11) does not split. This implies that the top row of (2.12)

does not split. This in turn implies that δ3(id) 6= 0 (by Proposition 2.1.24).

Now since H1(ϕ) is injective, we know that δ4(id) 6= 0 which gives us that

the second row of (2.12) does not split. Hence, the second row of (2.11), i.e.

0→ O → E ′ → O → 0

does not split. Applying Hom(O,−) = H0(−) to (2.11) we get the following
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commutative diagram with exact rows

0 // H0(O) // H0(E) // H0(L)
δ1 // H1(O) // · · ·

0 // H0(O) // H0(E ′) //

OO

H0(O)
δ2 //

f

OO

H1(O) //

g

· · ·

. (2.14)

with δ2(id) 6= 0. Because h0(O) = h1(O) = 1, δ2 is an isomorphism. Now

g ◦ δ2 6= 0. This implies δ1 ◦ f 6= 0. In particular δ1 6= 0. Since H0(L) and

H1(O) are one dimensional, we have δ1 is an isomorphism. Hence H0(O) ∼=

H0(E). This gives us h0(E) = 1.

We must now show the indecomposability of E. We know that h0(E) = 1.

Let φ ∈ End(E), then we will denote by H0(φ) the induced linear endomor-

phism of H0(E). Suppose that H0(φ) = 0. Then φ maps the line subbundle

O to zero because O is generated by its global section 1. Therefore it factors

through the quotient L:

φ : E → L→ E.

Now since (2.10) is nonsplit we have the following diagram

0 // O
α // E

β //

φ

��

L

γ
����

��
��

�

// 0

E
β

// L

We know Hom(L,L) ∼= Hom(L∗ ⊗ L) ∼= H0(O) is one dimensional, i.e.

Hom(L,L) = idL ·C. Hence β ◦ γ = λ · idL for some λ ∈ C. If λ 6= 0,

β ◦ ( 1
λ
γ) = idL and 1

λ
γ : L → E would split the sequence but we know

the sequence (2.10) is nonsplit, hence β ◦ γ = 0. It follows from this that

β ◦ φ = β ◦ γ ◦ β = 0. In other words, the image of φ is contained in the line

subbundle O ⊂ E, so that φ is induced by an element of Hom(L,O):

φ : E → L→ O → E.

However, we have Hom(L,O) ∼= H0(L∗) = 0. Hence, φ = 0 if H0(φ) = 0.
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If, on the other hand, H0(φ) 6= 0, then because h0(E) = 1, H0(φ) is

multiplication by a constant c ∈ C. Then by considering φ−c · idE we reduce

to the previous case and this shows that EndE = C. Hence, E is simple and

thus E is indecomposable. We have therefore proved the existence part of

the proposition, and it remains to show uniqueness.

Fixing L of degree 1 with detE ∼= L, we have H0(E) 6= 0 by Riemann-

Roch, i.e. Hom(O, E) 6= 0. Hence E contains O as a subsheaf. By applying

saturation (Remark 2.1.16) to this subsheaf we get the following diagram

0 // O� _

��

// E
g // F //

��

0

0 // E ′ // E // G // 0

(2.15)

in which E ′ ⊂ E is a line subbundle and so G is locally free. From Lemma

2.1.31 we get deg(E ′) ≤ 0. Since O →֒ E ′, we have H0(E ′) 6= 0. This implies

by Lemma 2.1.30 that deg(E ′) = 0 and E ′ ∼= O. The second row of (2.15) is

therefore of the following form

0→ O → E → G → 0

Because detE ∼= G, we have G = L. As H1(L) = 1, up to isomorphism E

is uniquely determined by L and so E is precisely the bundle constructed

above.

Proposition 2.3.5. On a smooth curve, C, of genus 1 every indecomposable

rank 2 vector bundle of even degree is an extension of the form

0 −→M −→ E −→ M −→ 0

for some line bundle M on E.

Proof. ([Mu] Proposition 10.48) Let degE = 2k. If M1 ∈ Pic−k(C), i.e. M1

is a line bundle of degree −k, then E ⊗M1 is of degree 0. In other words,

E⊗M1 ∈ E(r, 0). By Theorem 2.3.2, we know that there exists M2 ∈ Pic0(C)
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such that E ⊗M1
∼= E2 ⊗M2, where E2 is the so-called Atiyah bundle from

Theorem 2.3.2 and sits in a nonsplit exact sequence as follows

0→ OC → E2 → OC → 0.

If M := M2 ⊗M
∗
1 , we obtain E ∼= E2 ⊗M and tensoring this sequence by

M , gives a nonsplit short exact sequence

0→M → E → M → 0

Proposition 2.3.6. On a smooth elliptic curve, C, there is a bijection be-

tween C and Picn(C) for all n ∈ Z, where Picn(C) denotes the set of degree

n line bundles on C.

Proof. ([H] Example 1.3.7) Let us first show that there is a bijection between

C and Pic0(C). Fix a point P0 ∈ C, define a map

C → Pic0(C)

given by

P 7→ O(P − P0) with P ∈ C.

Now if P and Q are distinct points on C and O(P − P0) ∼= O(Q − P0), we

get O(P − Q) ∼= O. We know from Lemma 1.2.16 that P − Q = div(f) for

some meromorphic function f on C. This means that f has exactly one pole

of order 1 at Q and one zero of order 1 at P and no other poles or zeros.

Therefore we can define an isomorphism g : C → P1, given by x 7→ (f(x) : 1)

if x 6= Q and Q 7→ (1 : 0). Since f is a meromorphic function with exactly

one pole and is holomorphic elsewhere, g is an isomorphic. However, C has

genus 1 and P1 has genus 0, therefore they could not be isomorphic so we

have a contradiction. Hence O(P −Q) 6∼= O, unless P = Q. So we have

C →֒ Pic0(C)
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Now let us start with a line bundle, L ∈ Pic0(C). Tensor this with O(P0)

for P0 ∈ C, fixed. Since deg(L ⊗ O(P0)) = 1, by Lemma 2.1.30(b) we

have that h1(L ⊗ O(P0)) = 0 and by Riemann-Roch we know then that

h0(L⊗O(P0)) = 1. Hence we know that there exists s ∈ H0(L⊗O(P0)), s 6= 0

with

div(s) =
∑

P

ordP (s) · P

Now, since s is a holomorphic section, ordP (s) ≥ 0 for all P ∈ C. Hence
∑

ordp(s) = 1 and this in turn implies that div(s) = P . Hence L ∼= O(P )

and so we have a bijection between C and Pic0(C).

We also have a bijection between Pic0(C) and Picn(C) given by

Pic0(C)→ Picn(C)

L 7→ L⊗O(nP0)

whose inverse is

Picn(C)→ Pic0(C)

M 7→M ⊗O(−nP0)

where L ∈ Pic0(C) and M ∈ Picn(C).

Theorem 2.3.7. For each integer n, there is a one-to-one correspondence

between the set of isomorphism classes of indecomposable vector bundles of

rank 2 and degree n on the elliptic curve C, and the set of points on C.

Proof. ([H] Corollary 2.16) Let E be an indecomposable rank 2 vector bundle

of degree n on C. If n is odd, from Proposition 2.3.4, we know that there is a

unique indecomposable rank 2 vector bundle E of degree n, with detE ∼= L.

So we then use the bijection described in Proposition 2.3.6 to obtain the

result.

If n = 2k is even, we pick a line bundle, M , of degree −k so that E ⊗M

is of degree 0. From Theorem 2.3.2, we know there exists, L, a unique line

bundle of degree zero, such that E2 ⊗ L ∼= E ⊗M , where E2 is the unique

nontrivial extenstion of OC by OC . Since the line bundles of degree 0 are in

bijection with the points of C we obtain the result.
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2.4 Stability

The motivation for stability comes from Geometric Invariant Theory (G.I.T),

which was pioneered by David Mumford. This theory is used in constructing

moduli spaces. Using G.I.T, we need ‘stable’ vector bundles in order to

construct moduli spaces. For example, using stable bundles it is possible to

construct the moduli space of (stable) vector bundles of rank 2 and degree d

on C. In general, a moduli space is an algebraic variety which parametrises

the set of equivalence classes of some objects. To begin with we will give an

example of a moduli space.

Example 2.4.1. Let C be an elliptic curve. There is a line bundle on

C × Pic0(C) ∼= C × C called the Poincaré bundle, denoted P. It has the

property that P|C×{P}
∼= O(P − P0) for some point P0 on C and for all

P ∈ C.

Let us now show how to construct the Poincaré bundle. Consider the

subset ∆ = {(P,Q)|P = Q} ⊂ C × C called the diagonal. According to

Remark 1.2.2, ∆ is a divisor on C × C since locally it is the zero locus of a

single equation. According Remark 1.2.19, we can construct the associated

line bundle O(∆). Let pr1 and pr2 denote the projection of C × Pic0(C) ∼=

C ×C onto the first and second factor. Then pr−1
1 (P0) = {P0}×C ⊂ C ×C

and pr−1
2 (P0) = C × {P0} are divisors on C × C. The line bundle P :=

OC×C(∆ − {P0} × C − C × {P0}) is the (normalised) Poincaré bundle. It

satisfies

P|C×{P} = OC×{P}((P, P )− (P0, P ))

= OC(P − P0)

and

P|{P0}×C = OC(P0 − P0) = OC .

This is an example of a moduli space, Pic0(C), and it’s universal bundle, P.

Let us now introduce the notion of a stable vector bundle.
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Definition 2.4.2. A vector bundle, E on a curve, is stable (resp. semi-

stable) if every nonzero vector subbundle F ⊂ E satisfies

degF

rkF
<

degE

rkE
(resp. ≤).

(Or equivalently, we can also say that a vector bundle E is stable (resp.

semi-stable) if degG
rkG

> degE
rkE

(resp. ≥) for every nonzero quotient G of E).

From this definition we can see that a vector bundle E of rk 2 is stable

(resp. semi-stable) if every line subbundle F ⊂ E satifies

deg F <
1

2
degE (resp. ≤).

We call the rational number µ(E) := degE
rkE

the slope of E. The picture below

illustrates the reason for this name.

6

-�
�
�
��r
µ(E)

rk

deg

Lemma 2.4.3. Let E be a vector bundle of rank 2. If degE is odd, then

stability and semi-stabilty are equivalent.

Proof. ([Mu] Remark 10.21) Clearly if E is stable, then E is semi-stable.

For the other direction, we assume E is semi-stable with degree n. Now let

F ⊂ E be a nonzero subbundle of E, so degF ≤ n
2
. Since deg F is an integer,

degF 6= n
2

as n is odd. Hence degF < n
2
, i.e. E is stable.

Lemma 2.4.4. If E1 and E2 are semi-stable vector bundles, and µ(E1) >

µ(E2), then Hom(E1, E2) = 0

Proof. ([Ar] Section 1) Let f : E1 → E2 be a morphism, and let F ⊂ E2

be it’s image, which is again a vector bundle by Remark 1.3.22. Since E2 is

semi-stable, if F 6= 0, then degF
rkF
≤ degE2

rkE2
. But E1 is semi-stable and F is a

quotient of E1, and therefore degE1

rkE1
≤ degF

rkF
, a contradiction unless F = 0.
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2.4.1 Harder-Narasimhan filtrations

Each vector bundle admits a canonical increasing filtration called the Harder-

Narasimhan filtration whose successive quotients are semi-stable. This allows

us to describe bundles which are not semi-stable in terms of semi-stable

bundles. In order to prove that such a filtration exists we first need the

following lemma.

Lemma 2.4.5. (a) Let d, d′, r, r′ ∈ Z with r, r′ > 0.

(i) If d
r
> d′

r′
, then d

r
> d+d′

r+r′
> d′

r′
.

(ii) If d
r

= d+d′

r+r′
or d′

r′
= d+d′

r+r′
then d

r
= d′

r′
.

(b) Let 0→ E ′ → E → E ′′ → 0 be a short exact sequence of nonzero vector

bundles on X.

(i) If λ ∈ R such that µ(E ′) ≤ λ and µ(E ′′) ≤ λ, then µ(E) ≤ λ.

(ii) If one of the assumed inequalities in (i) is strict, then µ(E) < λ.

(iii) If µ(E ′) = µ(E) or µ(E) = µ(E ′′) then µ(E ′) = µ(E ′′).

(c) If

0 = E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ En = E

is a filtration by subbundles of E such that µ(Ei/Ei−1) ≤ λ for all i = 1, . . . , n

(i) then µ(Ei) ≤ λ for all i = 1, . . . , n. In particular, µ(E) ≤ λ.

(ii) If, for at least one i, we have µ(Ei/Ei−1) < λ, then µ(E) < λ.

Proof. (a) The proof of this is a simple calculation.

(b) Because rk(E) = rk(E ′) + rk(E ′′) and deg(E) = deg(E ′) + deg(E ′′),

this follows immediately from (a).

(c) This follows from (b) using exact sequences

0→ Ei−1 → Ei → Ei/Ei−1 → 0

for all i = 2, . . . n.

We are now ready to prove the existence and uniqueness of the Harder-

Narasimhan filration for each vector bundle on a curve.
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Proposition 2.4.6. Let E be a vector bundle on a curve C. Then E has an

increasing filtration by vector subbundles

0 = E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Ek = E

where the quotients gri = Ei/Ei−1 satisfy the following conditions:

1. the quotient gri is semi-stable;

2. µ(gri) > µ(gri+1) for i = 1, · · · , k − 1.

Proof. ([P01] Proposition 5.4.2) If E is already semi-stable then the result

is trivial. Assume, therefore that E is not semi-stable. We will prove this by

induction on the rank of E. If rk(E) = 1, then the result is trivial as all line

bundles are automatically stable. Now assume rk(E) ≥ 2. We know, from

Lemma 2.1.32, that the degree of all subbundles of E is bounded above. On

the other hand, subbundles can only have ranks 1, 2, . . . , rk(E) − 1, hence

the slope of the subbundles of E is bounded above. Let E1 be a subbundle

of maximal rank among all the subbundles of maximal slope. Then E1 is

semi-stable because it has maximal slope. Let E ′ = E/E1, then we have the

following short exact sequence:

0→ E1 → E → E ′ → 0

where rk(E ′) < rk(E).

By inductive assumption E ′ has an increasing filtration satisfying the

conditions of the proposition, i.e.

0 ⊂ F2 ⊂ F3 ⊂ · · · ⊂ Fk = E ′

with µ(F2) > µ(F3/F2) > · · · > µ(Fk/Fk−1) and Fj/Fj−1 is semi-stable for

2 ≤ j ≤ k. In particular F2 is semi-stable.

Let Ej ⊂ E be the preimage of Fj ⊂ E ′ under E → E ′. This way we

obtain a filtration 0 = E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Ek = E and commutative
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diagrams with exact rows:

0 // E1
// Ej+1

// Fj+1
// 0

0 // E1
// Ej //

?�

OO

Fj //
?�

OO

0.

Hence Ej+1/Ej ∼= Fj+1/Fj are semi-stable for all j = 1, . . . , k − 1.

Now we need to prove µ(F2) < µ(E1), in order to show condition 2

holds. Since E1 has maximal slope, µ(E2) ≤ µ(E1). Moreover, since E1

has maximal rank among the subbundles with slope µ(E1), µ(E2) < µ(E1).

From the diagram above we know that deg(F2) = deg(E2) − deg(E1) and

rk(F2) = rk(E2)− rk(E1). So we know µ(F2) = deg(E2)−deg(E1)
rk(E2)−rk(E1)

. We can also

write this as µ(F2) = rk(E2)µ(E2)−rk(E1)µ(E1)
rk(E2)−rk(E1)

. Then we have

rk(E2)µ(E2)− rk(E1)µ(E1)

rk(E2)− rk(E1)
<

rk(E2)µ(E1)− rk(E1)µ(E1)

rk(E2)− rk(E1)

i.e. µ(F2) < µ(E1). Now since E2/E1 = F2, we have µ(E1) > µ(E2/E1).

Lemma 2.4.7. If

0 = E0 ⊂ E1 ⊂ · · · ⊂ En = E

is a filtration of E satsifying the conditions of Proposition 2.4.6 and E ′ ⊂ E

is a nontrivial subbundle of E then µ(E ′) ≤ µ(E1) and if µ(E ′) = µ(E1),

then E ′ ⊂ E1.

Proof. We define a filtration of E ′ by E ′
i := E ′ ∩ Ei for all i = 1, . . . , n.

Because E ′
i = Ei ∩ E

′
i+1 we obtain E ′

i+1/E
′
i ⊂ Ei+1/Ei for i = 1, . . . , n − 1.

Now since Ei+1/Ei is semi-stable, we have either µ(E ′
i+1/E

′
i) ≤ µ(Ei+1/Ei)

or E ′
i+1 = E ′

i. Because µ(Ei+1/Ei) ≤ µ(E1) for i = 1, 2, . . . , n− 1, we obtain

from Lemma 2.4.5 (c) that µ(E ′) ≤ µ(E1). Now if there exists i ≥ 1 with

E ′
i+1 6= E ′

i then µ(E ′
i+1/E

′
i) ≤ µ(Ei+1/Ei) < µ(E1). Hence by Lemma 2.4.5

(c) again, µ(E ′) < µ(E1). Hence, if µ(E ′) = µ(E1) we must have E ′
i+1 = E ′

i

for i = 1, 2, . . . , n− 1, i.e. E ′ ⊂ E1.
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Proposition 2.4.8. This filtration of Proposition 2.4.6 is unique.

Proof. ([P01] Proposition 5.4.2) Assume (Ei)i=1,...,n and (Fj)j=1,...,m are two

filtrations of E satisfying the conditions of Proposition 2.4.6 above. Now

using the notation of Lemma 2.4.7 if we let E ′ := F1 we get µ(F1) ≤ µ(E1).

Similarly if we allow E ′ := E1, we get µ(E1) ≤ µ(F1). Clearly then, µ(F1) =

µ(E1).

Lemma 2.4.7 again implies E1 ⊂ F1 and F1 ⊂ E1, hence E1 = F1. Using

E/E1 and F/F1 we can proceed by induction as in the proof of Proposition

2.4.6 to conclude that the filtration is unique.

The filtration of Proposition 2.4.6 is called the Harder-Narasimhan filtra-

tion of E.
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Chapter 3

Bridgeland stability

In this chapter we outline some of the results of Bridgeland ([Br01] and

[Br02]). In Section 2.4 we have seen the definition of stability for a vector bun-

dle on a curve C. The notion of stability was generalised by Rudakov ([R]),

to give the notion of stability on an abelian category. For the rest of this

chapter A will denote an abelian category, unless otherwise specified. To

begin with, we need to introduce the notion of a stability function.

3.1 Stability conditions

Definition 3.1.1. Let M be the free abelian group and generated by iso-

morphism classes of objects in A, (for all objects E ∈ A, we also denote its

isomorphism class by E). In this free abelian group, let Γ be the subgroup

generated by all elements

E − F −G

for which there exists a short exact sequence 0 → F → E → G → 0 in

A. The quotient group M/Γ is called the Grothendieck group, K(A) and an

element of the Grothendieck group will be denoted [E].

Example 3.1.2. Let A = Coh(C) be the abelian category of coherent

sheaves on C, a smooth projective curve. The Grothendieck group,
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K(Coh(C)) = K(C) is then described by the following isomorphism (see [M]

Remark 10.9)

K(C)
∼
→ Z⊕ Pic(C), [F ] 7→ (rk(F), detF).

Definition 3.1.3. A stability function on A is a group homomorphism

Z : K(A)→ C such that for all nonzero E ∈ A the complex number Z(E) lies

in the strict upper half-plane H = {r · exp(iπφ)|r > 0 and 0 < φ ≤ 1} ⊂ C.

Using a stability function, we can define the phase of an object in A which

plays the role that the slope played for vector bundles on a curve.

Definition 3.1.4. Given a stability function Z : K(A)→ C, the phase of a

nonzero object [E] ∈ K(A) is defined to be

φ(E) =
1

π
argZ(E) ∈ (0, 1].

The function φ allows us to order the nonzero objects of A and thus leads

to a notion of stability for objects of A.

Definition 3.1.5. Let Z : K(A) → C be a stability function on an abelian

category A. A nonzero object E ∈ A is called semi-stable (with respect to

Z) if φ(F ) ≤ φ(E) for every nonzero subobject F ⊂ E. Equivalently, E is

semi-stable if φ(G) ≥ φ(E) for every nonzero quotient G of E.

Example 3.1.6. Let C be a smooth projective curve and let Coh(C) be the

abelian category of coherent sheaves on C. Consider the stability function

Z(E) = −deg(E) + i rk(E)

on Coh(C). An object E ∈ Coh(C) is semi-stable with respect to Z if and

only if it is semi-stable with respect to Definition 2.4.2.

6

-B
B

B
BBrZ(E)

− deg

rk
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The following is the Harder-Narasimhan property, which was outlined for

vector bundles on curves in Section 2.4.1.

Definition 3.1.7. Let Z : K(A) → C be a stability function on an abelian

category A. A Harder-Narasimhan filtration of a nonzero object E ∈ A is a

finite chain of subobjects

0 = E0 ⊂ E1 ⊂ · · · ⊂ En−1 ⊂ En = E

whose factors Fj = Ej/Ej−1 are semi-stable objects of A and satisfy

φ(F1) > φ(F2) > · · · > φ(Fn).

The stability function Z is said to have the Harder-Narasimhan property if

every nonzero object of A has a Harder-Narasimhan filtration.

Not every stability function has the Harder-Narasimhan property. The

following proposition follows from a result of Rudakov ([R]).

Proposition 3.1.8. Suppose A is an abelian category with a stability func-

tion Z : K(A) → C. The stability function, Z, has the Harder-Narasimhan

property if the following two conditions are satisfied:

(a) There are no infinite sequences of monomorphisms in A

· · · ⊂ Ej+1 ⊂ Ej ⊂ · · · ⊂ E2 ⊂ E1

with φ(Ej+1) > φ(Ej) for all j.

(b) There are no infinite sequences of epimorphisms in A

E1 ։ E2 ։ · · ·։ Ej ։ Ej+1 ։ · · ·

with φ(Ej) > φ(Ej+1) for all j.

Proof. See [Br01] Proposition 2.4

Let A be an abelian category and let D = Db(A) be the bounded derived

category. We now need to define the Grothendieck group of D as follows:
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Definition 3.1.9. Let M be the free abelian group generated by isomor-

phism classes of objects in D. In this free abelian group, let Γ be the subgroup

generated by all elements

X• − Y • − Z•

for which there exists a distinguished triangle Y • → X• → Z• → Y [1]• in

D. The quotient group M/Γ is called the Grothendieck group, K(D).

Proposition 3.1.10. There is an isomorphism K(A)→ K(D).

Proof. [Gr], Section 4.

Let us now introduce the notion of a stability condition on the bounded

derived category, D.

Definition 3.1.11. A stability condition σ = (Z,P) on D consists of a group

homomorphism Z : K(D) → C called the central charge, and a slicing P of

D, which by definition consists of full additive subcategories P(φ) ⊂ D for

each φ ∈ R, satisfying the following axioms:

(a) If 0 6= X• ∈ P(φ), then Z(X) = m(X) exp(iπφ) for some m(X) ∈

R>0.

(b) For all φ ∈ R,P(φ+ 1) = P(φ)[1].

(c) If X•
j ∈ P(φj) for j = 1, 2 and φ1 > φ2, then HomD(X•

1 , X
•
2 ) = 0.

(d) For each nonzero object X• ∈ D there exists a finite collection of

distinguished triangles

X•
j−1 → X•

j → A•
j → Xj−1[1]• (1 ≤ j ≤ n)

with X•
0 = 0, X•

n = X, and A•
j ∈ P(φj) for all j, such that

φ1 > φ2 > · · · > φn.

The nonzero objects of P(φ) are said to be semi-stable in σ of phase φ,

and the simple objects (i.e. those which have no nonzero proper subobjects)

of P(φ) are said to be stable.
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For any interval I ⊂ R, define P(I) to be the extension-closed subcategory

of D (A full subcategory A of D is called extension-closed if whenever A• →

B• → C• → A[1]• is a distinguished triangle in D, with A ∈ A and C ∈ A,

then B ∈ A also) generated by the subcatgories P(φ) for φ ∈ I.

Now let A = Coh(C), where C is a smooth projective curve and let

D = Db(A) be its bounded derived category. In this case we have the notion

of a numerical Grothendieck group given by the following definition:

Definition 3.1.12. We define a bilinear form on K(D), known as the Euler

form, by

χ(E•, F •) =
∑

i

(−1)i dimC HomD(E•, F [i]•),

and a free abelian group N (D) = K(D)/K(D)⊥, called the numerical

Grothendieck group of D, where

K(D)⊥ = {E• ∈ K(D)|χ(E•, F •) = 0 for all F • ∈ K(D)}.

The following lemma ([H] Exercise II.6.11) about coherent sheaves will

be useful in proofs later on.

Lemma 3.1.13. Let F be a coherent sheaf on a smooth projective curve, C.

Then there exist locally free sheaves (i.e. holomorphic vector bundles) E0 and

E1 and an exact seqeunce

0→ E1 → E0 → F → 0.

We call the exact sequence above a locally free resolution of F .

Remark 3.1.14. If F is a coherent sheaf on C and

0→ E1 → E0 → F → 0

is a locally free resolution of F , then we define the degree, rank and deter-

minant of F as follows:

deg(F) := deg(E0)− deg(E1)
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rk(F) := rk(E0)− rk(E1)

det(F) = det(E0)⊗ det(E1)
∗.

Note that this coincides with out definition of degree, rank and determinant

of a vector bundle if F were locally free (See Remark 2.1.11 and page 62).

Example 3.1.15. Let Coh(C) be the category of coherent sheaves on an

elliptic curve, C. Let D = Db(Coh(C)) be its bounded derived category. Set

K(C) = K(Db(Coh(C)). We want to compute the numerical Grothendieck

group N (C) = K(C)/K(C)⊥. Let E•,F• ∈ Db(Coh(C)). The Euler form

χ(E•,F•) =
∑

i

(−1)i dimC HomD(E•,F [i]•),

can also be written as (from Remark 1.4.68)

χ(E ,F) =
∑

i

(−1)i dimC Exti(E ,F).

Assume for the moment that one of E or F is locally free. Since C is a curve

we then get

χ(E ,F) = dim Ext0(E ,F)− dim Ext1(E ,F)

= h0(E∗ ⊗F)− h1(E∗ ⊗ F),

where the last equality uses Proposition 2.1.18. Using the Riemann-Roch

formula we get

χ(E ,F) = deg(E∗ ⊗ F)

= − deg(E) rk(F) + rk(E) deg(F).

This also works if neither of E or F are locally free. If E is any coherent

sheaf on a smooth projective curve, there exists a locally free resolution of E

(Lemma 3.1.13) as follows:

0→ E1 → E0 → E → 0.

Now χ(−,F) is an additive function on short exact sequences so we have

χ(E ,F) = χ(E0,F)− χ(E1,F)
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Let dF = deg(F), rF = rk(F) and let di = deg(Ei) and ri = rk(Ei) for

i = 1, 2. Using Proposition 2.1.18 and Riemann-Roch as above, we then get

χ(E ,F) = r0dF − rFd0 − (r1dF − rFd1)

= (r0 − r1)dF − rF(d0 − d1)

= rk(E) deg(F)− rk(F) deg(E).

Now by definition of K(C)⊥ we know that [E ] ∈ K(C)⊥ if and only if rk(E) =

deg(E) = 0. Now consider the short exact sequence

0→ K(C)⊥ → K(C)→ Z
2 → 0

where K(C) → Z2 is given by [F ] 7→ (rk(F), deg(F)) and K(C)⊥ is the

kernel of K(C)→ Z2. Hence we get K(C)/K(C)⊥ ∼= Z2, i.e. N (C) = Z2.

We also have the notion of a numerical stability condition as follows:

Definition 3.1.16. A stability condition (Z,P) on D, the bounded derived

category of coherent sheaves on a smooth projective curve, is said to be

numerical if the central charge Z : K(D) → C factors through the quotient

group N (D) = K(D)/K(D)⊥, i.e. if there exists a homomorphism of groups

f : N (D)→ C such that Z = f ◦ g in the following diagram, where g is the

quotient map

K(D)⊥ // K(D)
g // //

Z

��

N (D)

f
zzu

u
u

u
u

C

.

3.2 t-structures

The notion of a t-structure was introduced by A. Beilinson, J. Bernstein and

P. Deligne in [BBD]. T-structures are the tool which allows one to see the

different abelian categories embedded in a given triangulated category (in

our case the bounded derived category D, of an abelian category A. See

Remark 1.4.57). Let us now give the definition of a t-structure.
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Definition 3.2.1. A t-structure on D is a pair of strictly full subcategories

(See Definition 1.4.24) (D≤0,D≥0) such that, if we let D≤n = D≤0[−n] and

D≥n = D≥0[−n] for every n ∈ Z, then

(a) D≤0 ⊆ D≤1,D≥0 ⊇ D≥1.

(b) HomD(X•, Y •) = 0 for every X• ∈ D≤0 and Y • ∈ D≥1.

(c) For any X• ∈ D there exists a distinguished triangle

Y • → X• → Z• → Y [1]•

such that Y • ∈ D≤0 and Z• ∈ D≥1.

Definition 3.2.2. The heart of a t-structure (D≤0,D≥0) on D is the full

subcategory D≤0 ∩ D≥0 ⊂ D. The standard t-structure on D is defined by

D≤0 = {X• ∈ D|Hp(X•) = 0 ∀p > 0},D≥0 = {X• ∈ D|Hp(X•) = 0 ∀p < 0}.

The heart of the standard t-structure is A.

Definition 3.2.3. A t-structure (D≤0,D≥0) on D is called bounded if

⋃

n∈Z

D≤n = D =
⋃

n∈Z

D≥n

Example 3.2.4. The standard t-structure is bounded. Clearly
⋃

n∈Z
D≤n ⊂

D. Recall that if X• is an object of D, then there exists integers m and M

such that Hn(X•) = 0 for all n < m and n > M . Hence, X• ∈ D≥m ∩ D≤M

and so D ⊂
⋃

n∈Z
D≤n. Similarly the equality on the right can be shown.

The main result that we can now state about stability conditions is the

following:

Proposition 3.2.5. To give a stability condition on a bounded derived cat-

egory D is equivalent to giving a bounded t-structure on D and a stability

function on its heart with the Harder-Narasimhan property.

Proof. See [Br01] Proposition 5.3. An alternative proof can also be found

in [Ar] Proposition 3.1.
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Example 3.2.6. Let A = Coh(C), the category of coherent sheaves on

a smooth projective curve, C, and let D be it’s bounded derived category.

Consider the standard t-structure on D and the stability function on A as

outlined in Example 3.1.6. Applying Proposition 3.2.5 then gives a stability

condition on the bounded derived category D.

3.3 The space of stability conditions

In this section A will denote an abelian category and D = Db(A) will denote

its bounded derived category.

Definition 3.3.1. A slicing P of the category D is locally-finite if there exists

a real number η > 0 such that for all t ∈ R the category P((t−η, t+η)) ⊂ D

is of finite length (See Definition 1.4.17). A stability condition (Z,P) is called

locally-finite if the corresponding slicing P is.

We denote the set of locally-finite slicings of D by Slice(D) and the set

of locally-finite stability conditions on D by Stab(D). It has been shown

in [Br01] Section 6 that Stab(D) can be equipped with a topology induced

by the inclusion

Slice(D) ⊂ Slice(D)× HomZ(K(D),C).

The group G̃L
+
(2,R) plays an important role in the study of Stab(D). It is

the universal cover of the connected group

GL+(2,R) = {A ∈ GL(2,R)| detA > 0}.

It can be described as follows:

G̃L
+
(2,R) := {(A, f)|A ∈ GL+(2,R) and f : R→ R

a compatible increasing map}.

A map f : R→ R is called compatible with A ∈ GL+(2,R) if:
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(a) f(φ+ 1) = f(φ) + 1 for all φ ∈ R.

(b) For all φ ∈ R and for all v ∈ R2\{0} such that exp(iπφ) = v
||v||

, we

also have exp(iπf(φ)) = Av
||Av|| (Note that here we identify C with R2).

The group structure on G̃L
+
(2,R) is as follows: for all (A, f), (B, g) ∈

G̃L
+
(2,R), (A, f)◦(B, g) = (AB, f ◦g) and (f ◦g)(φ) = f(g(φ)). The neutral

element is (I2, idR), where I2 denotes the identity 2× 2 matrix.

Recall that a right action of a group G on a set M is given if for each pair

(m, g) ∈M ×G there is given an element m · g ∈M such that the following

two conditions are satisfied:

(a) For all m ∈M , m · 1 = m where 1 ∈ G is the neutral element

(b) For all m ∈M and g, h ∈ G,m · (gh) = (m · g) · h.

Now we have the following important lemma.

Lemma 3.3.2. The space Stab(D) carries a right action of the group

G̃L
+
(2,R).

Proof. Given a stability condition σ = (Z,P) ∈ Stab(D), and a pair (A, f) ∈

G̃L
+
(2,R), define a new stability condition σ′ = (Z ′,P ′) by setting Z ′ :=

A−1 ◦ Z and P ′(φ) := P(f(φ)). Let us check that this really is a group

action: (a) Clearly (Z,P) · (I2, idR) = (Z,P) for all (Z,P) ∈ Stab(D).

(b) For all (A, f), (B, g) ∈ G̃L
+
(2,R) and for all (Z,P) ∈ Stab(D),

(Z,P) · ((A, f)(B, g)) = (Z,P) · (AB, f ◦ g)

= (B−1 ◦ A−1 ◦ Z,P(f ◦ g))

and we have

((Z,P) · (A, f)))(B, g)) = (A−1 ◦ Z,P(f))(B, g)

= (B−1 ◦ A−1 ◦ Z,P(f ◦ g))

And so we see that Stab(D) carries a right action of the group G̃L
+
(2,R).

Note that the semi-stable objects of the stability conditions σ and σ′ are the

same, but the phases have been relabelled.
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3.4 Examples of spaces of stability conditions

In this section, we give an overview of the known spaces of stability conditions

to date that can be given explicitly. We denote the space of locally-finite

numerical stability conditions by StabN (C) on D(C), where D(C) is the

bounded derived category of coherent sheaves on a curve C.

Example 3.4.1. ([Br01] Theorem 9.1) Let C be a smooth projective curve

of genus one, then G̃L
+
(2,R) acts transitively on StabN (C) and

StabN (C) ∼= G̃L
+
(2,R).

Example 3.4.2. Burban and Kreussler ([BK]) showed that if C is an irre-

ducible singular curve of genus one, the resulting space of stability conditions

is the same as in the smooth case outlined above.

Example 3.4.3. S. Okada ([O]) proved that

StabN (P1) ∼= C
2.

Example 3.4.4. E. Macri ([Ma]) proved that for any curve C of genus g ≥ 2

one has

StabN (C) ∼= G̃L
+
(2,R).
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Chapter 4

Coherent systems

We have already looked at stability of vector bundles over a curve. We

could also examine stability conditions on higher dimensional manifolds. T.

Bridgeland has studied the space of stability conditions on K3 surfaces and

on abelian surfaces in [Br03]. However, for the purpose of this thesis I chose

to vary the object of which I study stability conditions as opposed to the

manifold. We will now examine the stability of coherent systems on a curve.

Our aim then is to find out whether or not this notion of stability fits into

Bridgeland’s framework as outlined in Chapter 3. To begin with, we will

outline some preliminaries of coherent systems. Throughout this section, C

will denote a smooth projective curve.

4.1 Preliminaries

Definition 4.1.1. A coherent system of type (r, d, k) on a smooth projective

curve, C, is a pair (E, V ) consisting of a coherent sheaf, E, of rank r and

degree d over C and a vector subspace V ⊂ H0(E) of dimension k.

Definition 4.1.2. A morphism of coherent systems f : (E ′, V ′)→ (E, V ) is

a morphism of coherent sheaves f : E ′ → E such that H0(f)(V ′) ⊂ V .

Let us denote by CohSys(C), the category in which the objects are co-
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herent systems on C and the morphisms are morphisms of coherent systems.

This category has a zero object, (0, 0), which consists of the zero coherent

sheaf and the zero vector space. Let us show that (0, 0) is the zero object as in

Definition 1.4.5. We must show that for any coherent system (E, V ) there is

precisely one morphism to and from (0, 0). Let f : (0, 0)→ (E, V ) be a mor-

phism in CohSys(C). By definition, f : 0 → E is a morphism of coherent

sheaves and H0(f)(0) ⊂ V . Since 0 is the zero object in Coh(C), this mor-

phism is unique. Similarly we can show that the morphism g : (E, V )→ (0, 0)

is unique. Hence (0, 0) is the zero object in CohSys(C).

Definition 4.1.3. A coherent subsystem of (E, V ) is a coherent system

(E ′, V ′) such that E ′ is a subsheaf of E and V ′ ⊂ V ∩H0(E ′).

Since Coh(C) is an abelian category, we know the Hom-sets are equipped

with the structure of an abelian group such that composition distributes over

addition. Thus, the Hom-sets in CohSys(C) also have this property.

Now, for every pair of objects (E, V ) and (E ′, V ′) in CohSys(C), we

construct a product as follows:

(E, V )× (E ′, V ′) := (E ⊕ E ′, V ⊕ V ′).

Let us show that this really is a product in the sense of Definition 1.4.12.

Since E⊕E ′ is the product of E and E ′ in the category of Coh(C) we know

that there exists morphisms

E E ⊕E ′
pr1oo pr2 // E ′

Clearly V ⊕V ′ ⊂ H0(E⊕E ′), hence pr1 : E⊕E ′ → E and pr2 : E⊕E ′ → E ′

are morphisms of coherent systems . Now assume we are given two morphisms

of coherent systems

(E, V ) (F,W )
aoo a′ // (E ′, V ′)

where a : F → E and a′ : F → E ′ are morphisms of coherent sheaves. In

Coh(C), there is a unique morphism a⊕a′ : F → E⊕E ′. It remains to show
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that H0(a⊕a′)(W ) ⊂ V ⊕V ′. We know H0(a)(W ) ⊂ V and H0(a′)(W ) ⊂ V ′

by assumption, hence

H0(a⊕ a′)(W ) = {(a⊕ a′)(w) = (a(w), a′(w)) ∈ H0(E)⊕H0(E ′)|w ∈W}

⊂ V ⊕ V ′.

Hence a ⊕ a′ : (F,W ) → (E ⊕ E ′, V ⊕ V ′) is a unique morphism of coher-

ent systems and so we really construcuted a product in CohSys(C). Thus

CohSys(C) is an additive category (see Definition 1.4.30).

The category CohSys(C) also has kernels and cokernels as follows: The

kernel of the morphism f : (E ′, V ′) → (E, V ) is the coherent subsystem

(ker f, V ′∩H0(ker f)), where ker f is the usual kernel of the sheaf morphism

f : E ′ → E.

The cokernel of the morphism f : (E ′, V ′) → (E, V ) is the coherent

system (coker f, V ′′) where V ′′ is the image of V in H0(coker f) and coker f

is the sheaf associated to the presheaf coker′ f . We must now check that these

actually define a kernel and cokernel in CohSys(C) as outlined in Definitions

1.4.7 and 1.4.8, respectively.

Kernel : Given a morphism f : (E ′, V ′)→ (E, V ) of coherent systems, we

want to show that i : (K,W )→ (E ′, V ′) is the kernel of f , where (K,W ) :=

(ker f, V ′∩H0(ker f)). Clearly from the definitions (K,W ) is itself a coherent

system (i.e. W ⊂ H0(K)), i : (K,W ) → (E ′, V ′) is a morphism of coherent

systems (i.e. i : K → E ′ is a morphism of sheaves and H0(i)(W ) ⊂ V ′) and

fi = 0.

It remains to show that i : (K,W ) → (E ′, V ′) satisfies the universal

property, i.e. given a morphism e : (F, U) → (E ′, V ′) such that fe = 0, we

must show that there exists a unique morphism e′ : (F, U) → (K,W ) such

that ie′ = e

(K,W )
i // (E ′, V ′)

f // (E, V )

(F, U)

e′

OO�
�

�

e
99ssssssssss

.
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Consider the morphisms in Coh(C). Since K = ker f in Coh(C), we know

i : K → E ′ satisfies the universal property, i.e. for every e : F → E ′ satisfying

fe = 0, we have the following commutative diagram of coherent sheaves

0 // K
i // E ′

f // E

F

e′

OO
e

>>}}}}}}}

for a unique e′. This induces linear maps (of vector spaces)

0 //H0(K)
H0(i) // H0(E ′)

H0(f) // H0(E)

H0(F )

H0(e′)

OO
H0(e)

99ttttttttt

with U ⊂ H0(F ),W ⊂ H0(K), V ′ ⊂ H0(E ′), V ⊂ H0(E). The above dia-

gram is commutative and the first row is exact. We know that H0(e)(U) ⊂

V ′, since e is a morphism of coherent systems. So all that remains to show

now is that H0(e′)(U) ⊂ W , i.e. that e′ really is a morphism of coherent

systems.

For any u ∈ U ⊂ H0(F ) we have H0(f)H0(e)(u) = 0 (because f ◦

e = 0, hence H0(f) ◦ H0(e) = H0(f ◦ e) = 0), i.e. H0(e)(u) ∈ ker(H0(f)).

Hence H0(e)(u) ∈ V ′ ∩ ker(H0(f)). But because of the exactness of the first

row, ker(H0(f)) = H0(K) (considered as a subspace of H0(E ′)). This gives

H0(e′)(u) = H0(i)H0(e′)(u) = H0(e)(u) = H0(e)(u) ∈ V ′ ∩ H0(K) = W as

required.

Cokernel : Now given a morphism f : (E ′, V ′) → (E, V ) we want

show that p : (E, V ) → (C,W ) is the cokernel of f , where (C,W ) :=

(coker f,H0(p)(V )). Clearly from the definitions (C,W ) is itself a coherent

system (i.e. W ⊂ H0(C)), p : (E, V )→ (C,W ) is a morphism of coherent sys-

tems (i.e. p : E → C is a morphism of coherent sheaves and H0(p)(V ) ⊂W )

and pf = 0.

It remains to show that p : (E, V )→ (C,W ) satisfies the universal prop-

erty, i.e. given a morphism g : (E, V ) → (F, U) such that gf = 0, we must
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show that there exists a unique morphism g′ : (C,W ) → (F, U) such that

g = g′p

(E ′, V ′)
f // (E, V )

p //

g

��

(C,W )

g′zzt
t

t
t

t

(F, U)

.

Consider the morphisms in Coh(C). Since C = coker f in Coh(C), we know

p : E → C satisfies the universal property, i.e. for every g : E → F satisfying

gf = 0, we have the following commutative diagram

E ′
f // E

p //

g

��

C

g′����
��

��
��

F

for a unique g′. All that remains to show now is thatH0(g′)(W ) ⊂ U , i.e. that

g′ really is a morphism of coherent systems. Consider first the induced maps

on the vector spaces as follows:

H0(E ′)
H0(f) // H0(E)

H0(p) //

H0(g)
��

H0(C)

H0(g′)zzuuuuuuuuu

H0(F )

(4.1)

with V ′ ⊂ H0(E ′), V ⊂ H0(E),W ⊂ H0(C) and U ⊂ H0(F ). Since p and

g are morphisms of coherent systems, we know that H0(p)(V ) ⊂ W and

H0(g)(V ) ⊂ U . From the commutativity of (4.1), if v ∈ V we then get

H0(g′)H0(p)(v) = H0(g)(v). Now for any w ∈ W ⊂ H0(C), we know by

construction of W that there exists v ∈ V such that H0(p)(v) = w. Hence,

we have H0(g′)(w) = H0(g)(v) ∈ U as required.

4.2 Stability

In contrast to stability of vector bundles on curves, the stability notion for

coherent systems depends on a real parameter α. This notion of stability

permits the construction of moduli spaces.
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Definition 4.2.1. For any real number α, the α-slope of a coherent system

(E, V ) of type (r, d, k) is defined by

µα(E, V ) :=
d

r
+ α

k

r
.

A coherent system (E, V ) is called α-stable (resp. α-semi-stable) if

µα(E
′, V ′) < µα(E, V ), (resp. µα(E

′, V ′) ≤ µα(E, V ))

for every nontrivial coherent subsystem (E ′, V ′) of (E, V ), i.e. every coherent

subsystem other than (0, 0) and (E, V ) itself.

4.2.1 Moduli spaces of (semi-)stable coherent systems

Here we outline some of what is available in the literature about the moduli

spaces of (semi-)stable coherent systems. Note that all coherent systems

(E, V ) considered in this and the following subsection consist of a vector

bundle (i.e. a locally free sheaf), E and a vector subspace V ⊂ H0(E).

The α-stable coherent systems of type (r, d, k) on C form a moduli space,

which we will denote G(α; r, d, k). The α-range for which α-stable coherent

systems exist is divided into a finite number of open intervals such that the

moduli spaces G(α; r, d, k) for any two values of α inside the same interval

coincide. In the case of C an elliptic curve, Lange and Newstead ([LN]) have

given a complete description of these moduli spaces.

We denote the moduli space of stable vector bundles of rank r and degree

d on an elliptic curve C by M(r, d). Now, if k ≥ 1 and α ≤ 0, α-stable

coherent systems of type (r, d, k) do not exist (See [BGMN], Section 2.1).

The main results of [LN] can be summarised by the following theorem:

Theorem 4.2.2. Let C be an elliptic curve and suppose r ≥ 1, k ≥ 0. Then:

(a) G(α; r, d, 0) ∼= M(r, d) for all α. In particular G(α; r, d, 0) is non-

empty if and only if gcd(r, d) = 1;

(b) For α > 0 and k ≥ 1, G(α; 1, d, k) is independent of α and is non-

empty if and only if either d = 0, k = 1 or k ≤ d;
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(c) For α > 0, r ≥ 2 and k ≥ 1, G(α; r, d, k) 6= ∅ if and only if (r−k)α < d

and either k < d or k = d and gcd(r, d) = 1.

4.2.2 Bounds for α

We know that if k ≥ 1, α-stable coherent systems on an elliptic curve, C,

exist only for α > 0. The following theorem ([LN], Theorem 4.4) tells us

information about the bounds for α, when examining moduli spaces of α-

stable coherent systems.

Theorem 4.2.3. The set

I(r, d, k) := {α|G(α; r, d, k) 6= ∅}

is an open interval (possibly infinite or empty). Moreover, if I(r, d, k) 6= ∅,

there exists a coherent system of type (r, d, k) which is α-stable for all α ∈

I(r, d, k).

To obtain the range of α for which G(α; r, d, k) 6= ∅, by Theorem 4.2.3, it

is enough to find the upper and lower bound for α. These bounds are given

by the following two theorems.

Theorem 4.2.4. ([LN] Theorem 5.1) Suppose k > 0 and either k < d or

k = d and gcd(r, d) = 1. Then

inf{α|G(α; r, d, k) 6= ∅} = 0.

Theorem 4.2.5. ([LN] Theorem 5.2) Suppose 0 < k < r and that either

k < d or k = d and gcd(r, d) = 1. Then

sup{α|G(α; r, d, k} 6= ∅} =
d

r − k
.

We call α > 0 a critical value if there exists a proper coherent subsystem

(E ′, V ′) of (E, V ) such that k′

r′
6= k

r
but µα(E

′, V ′) = µα(E, V ). We also call

0 a critical value.
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If the critical values of α are denoted αi, starting with α0 = 0, the α-

range is divided into (αi, αi+1). Within the interval (αi, αi+1), the property

of α-stability is independent of α. This means that for any two values α, α′

in the interval (αi, αi+1), G(α; r, d, k) = G(α′; r, d, k) ([BGMMN] Definition

1.2).

Proposition 4.2.6. ([BGMN] Proposition 4.2) Let k ≥ r. Then there is a

critical value, denoted by αL such that the α-range is divided into a finite set

of intervals bounded by critical values such that

0 < α0 < α1 < · · · < αL <∞

where, for any two α, α′ ∈ (αL,∞), G(α; r, d, k) = G(α′; r, d, k).

So now we have seen that the moduli space of semi-stable coherent sys-

tems depends on a parameter. It would be very interesting to see if this fits

into the framework of Bridgeland stability conditions and if so, what role the

parameter plays in this framework.

4.3 Bridgeland stability

In order to view α-stability as a Bridgeland stability condition, the first

step would be to check whether or not the category of coherent systems on a

smooth projecitve curve, CohSys(C), is abelian. We know CohSys(C) is an

additive category in which every morphism has a kernel and a cokernel. If we

also knew that all morphisms in CohSys(C) are strict, then by Proposition

1.4.34, we would get that CohSys(C) is an abelian category. We have seen

the definition of a strict morphism (Definition 1.4.10) in Section 1.4. Let us

now give a more workable description of a strict morphism in CohSys(C).

Lemma 4.3.1. A morphism f : (E ′, V ′) → (E, V ) of coherent systems is a

strict morphism if and only if H0(f)(V ′) = V ∩H0(im f).
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Proof. Because the category, Coh(C) is an abelian category, f : E ′ → E

is strict. This means that f : E ′ → im(f) is the cokernel of ker(f) ⊂ E ′

and im(f) ⊂ E is the kernel of E → coker(f). Using our constructions of

ker and coker in the category of coherent systems, we get that the kernel

of f : (E ′, V ′) → (E, V ) is (ker(f), V ′ ∩ H0(ker f)) and that its cokernel is

(coker(f), H0(g)(V )). Now the cokernel of (ker(f), V ′∩H0(ker f)) ⊂ (E ′, V ′)

is (im f,H0(f)(V ′)) and the kernel of (E, V ) → (coker(f), H0(g)(V )) is

(im(f), H0(im(f)) ∩ V ) ⊂ (E, V ). So we see that f : (E ′, V ′) → (E, V )

is a strict morphism if and only if H0(im(f)) ∩ V = H0(f)(V ′).

However, not all morphisms in CohSys(C) are strict. Let us look at an

example of a nonstrict morphism.

Example 4.3.2. Consider two coherent systems, (O⊕2, 0) and (O, H0(O)).

Let pr1 : O⊕2 → O be a morphism of coherent sheaves given by projection

to the first factor. This is an epimorphism in Coh(C), i.e. im(p1) = O. So

we have a morphism of coherent systems

(O⊕2, 0)
pr1−−−→ (O, H0(O)).

We want to know if this morphism is strict. Now H0(pr1)(0) = 0, since

H0(pr1) is a linear map. Then we have H0(O) ∩H0(im(pr1)) = H0(O). So

clearly 0 6= H0(O), hence pr1 is not a strict morphism of coherent systems.

Thus we conclude that CohSys(C) is not an abelian category. So now

we define a new category, denoted CohSysst(C) in which the objects are

again coherent systems but the morphisms are all the strict morphisms. It

seems plausible that this category is abelian (See [P02], Chapter 4, Section

4.1). Let us check the details. We must first check if CohSysst(C) is an

additive category. It turns out that HomCohSysst(C)((E
′, V ′), (E, V )) is not

always an additive subgroup of HomCohSys(C)((E
′, V ′), (E, V )). We illustrate

this by the following example.
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Example 4.3.3. Consider the coherent system (O, 0) and let (E, V ) be an-

other coherent system. Then

HomCohSysst(C)((O, 0), (E, V )) = {f : O → E|H0(f)(0) = V ∩H0(im f)}

We know from Proposition 2.1.18 that HomCoh(C)(O, E) ∼= H0(E). Under

this identification f ∈ HomCoh(C)(O, E) corresponds to H0(f)(1) = s ∈

H0(E). Now H0(im f) = C · s, hence V ∩H0(im f) = 0 if and only if s 6∈ V

or s = 0. So we have

HomCohSysst(C)((O, 0), (E, V )) = {s ∈ H0(E)|s = 0 or s 6∈ V }.

= (H0(E)\V ) ∪ {0}

If w ∈ H0(E)\V and v ∈ V , then w−v ∈ H0(E)\V . But w−(w−v) = v ∈ V .

If 0 6= V and V 6= H0(E), this shows that (H0(E)\V )\{0} is not an additive

subgroup of H0(E). For example, if E = O⊕2 and V ⊂ H0(E) ∼= C2 any one

dimensional subspace, then

HomCohSysst(C)((O, 0), (O⊕2, V )) ⊂ HomCohSys(C)(O, 0), (O⊕2, V ))

is not an additive subgroup.

Hence CohSysst(C) is not an additive subcategory of CohSys(C). How-

ever, we cannot conclude that CohSysst(C) is not an additive category, as it

may have a different additive structure. In order to show that CohSysst(C)

is not an abelian category, we go back to the axioms given in Definition 1.4.27.

We first show the existence of the zero object and of kernels and cokernels

but then we show that products do not exist in general in CohSysst(C).

1. The category CohSysst(C) has a zero object, namely (0, 0).

3. We must now show that every morphism has a kernel and a cokernel.

Kernel : We have seen in Section 4.1 that every morphism in CohSys(C)

has a kernel. If f : (E ′, V ′) → (E, V ) is a strict morphism, its kernel in

CohSys(C) is (K,W ) = (ker f, V ′ ∩H0(ker f)). Now we want to show that

i : (K,W ) → (E ′, V ′) is also the kernel of f in CohSysst(C). Firstly, it is
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clear that i is a strict morphism, i.e. H0(i)(W ) = V ′ ∩ H0(im(i)), since by

definition W := V ′ ∩H0(K) and i : K ⊂ E ′ is just inclusion.

It remains to show that i : (K,W ) → (E ′, V ′) satisfies the universal

property, i.e. given strict a morphism e : (F, U)→ (E ′, V ′) such that fe = 0,

we must show that there exists a unique strict morphism e′ : (F, U)→ (K,W )

such that ie′ = e

(K,W ) i // (E ′, V ′)
f // (E, V )

(F, U)

e′

OO�
�

�

e
99ssssssssss

.

We know that there is a unique morphism e′ in CohSys(C) with the prop-

erty outlined above so we must just show that e′ is a strict morphism,

i.e. H0(e′)(U) = W ∩ H0(im(e′)). Consider the following commutative dia-

gram in Coh(C)

ker(f) � � // E ′

F

e′

OO

e

;;xxxxxxxxx

(4.2)

and the induced morphisms on the vector spaces

W = H0(ker(f)) ∩ V ′ � � // V ′

U

H0(e′)

OO

H0(e)

66mmmmmmmmmmmmmmmmm

From this we know that H0(e)(U) = H0(e′)(U) and from (4.2) that im e =

im e′ ⊂ ker(f). This implies that H0(im(e)) = H0(im(e′)) ⊂ H0(ker f). This

in turn implies that W ∩ H0(im(e′)) = V ′ ∩H0(im(e′)), but im(e′) = im(e)

so we have W ∩ H0(im(e′)) = V ′ ∩ H0(im(e)). Since e is strict we know

H0(e)(U) = V ′ ∩ H0(im(e)), so this gives us H0(e′)(U) = H0(e)(U) = W ∩

H0(im(e′)) and so e′ is a strict morphism.

Cokernel : We have seen in Section 4.1 that every morphism has a

cokernel in CohSys(C). If f : (E ′, V ′) → (E, V ) is a strict morphism,
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then its cokernel in CohSys(C) is given by p : (E, V ) → (C,W ), where

(C,W ) := (coker f,H0(p)(V )). We now need to show that p(E, V )→ (C,W )

is also the cokernel of f in CohSysst(C). The proof is similar to the kernel

case so we do not repeat the details.

Lemma 4.3.4. There does not exist a product of (O, H) and (O, H) in

CohSysst(C), where H := H0(O) ∼= C.

Proof. Assume (F , V ) is the product of (O, H) and (O, H). It comes with

two strict morphisms (O, H) (F , V )
q2oo q1 // (O, H) such that the univer-

sal property for the product is satisfied (see again Definition 1.4.12).

Let pri : O⊕2 → O denote the first and second projections for i = 1, 2.

Then, pri : (O⊕2, H0(O⊕2)) → (O, H) are strict for i = 1, 2. Hence the

universal property of (F , V ) implies the existence of a (unique) strict mor-

phism a : (O⊕2, H0(O⊕2)) → (F , V ) such that qi ◦ a = pi(i = 1, 2). This is

illustrated by the following diagram

(O, H)

(O⊕2, H0(O⊕2))

pr1
77nnnnnnnnnnnn

a //

pr2 ''PPPPPPPPPPPP
(F , V )

q1

OO

q2

��
(O, H)

Let K := ker(a) in Coh(C). Then pri |K = qi ◦ ai|K = 0. The universal

property for the product of O⊕2 in Coh(C) implies K = 0. Hence by Lemma

1.4.32, a is a monomorphism in Coh(C). It is easy to see that a strict

morphism which is a monomorphism in Coh(C) is also a monomorphism in

CohSysst(C) and hence a is a monomorphism in CohSysst(C).

On the other hand, the universal property of O⊕2 in Coh(C) implies the

existence of a morphism F
b // O⊕2 in Coh(C) which satisfies pri ◦b =

qi(i = 1, 2), so b ◦ a = idO⊕2 (again by universality of the product O⊕2 in

Coh(C)). This shows (as in Definition 2.1.22) that the sequence

0 // O⊕2 a // F // coker a // 0
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splits, i.e. F ∼= O⊕O⊕G, where G := coker a. This gives us a monomorphism

in Coh(C), G � � γ // F and with W := V ∩H0(G), γ : (G,W ) → (F , V ) is a

monomorphism in CohSysst(C)

Now we want to show that G = 0. First assume that W = 0. The

morphisms γi := qi ◦γ : (G, 0)→ (O, H) are strict. Hence H0(im(γi)) = 0. If

γ̃ : G → O⊕2 is the morphism which is defined by the universality of product

in Coh(C), we also obtain H0(im(γ̃)) = 0. In particular, γ̃ : (G, 0) →

(O⊕2, H0(O⊕2)) is strict, hence a ◦ γ̃ : (G, 0)→ (F , V ) is strict and satisfies

qi ◦ a ◦ γ̃ = γi. This contradicts uniqueness in the definition of the product

(F , V ) because a ◦ γ̃ 6= γ.

Now let us assume that W 6= 0. Let w1, . . . , wm be a basis of W . Then,

the sheaf of sections, W, of the trivial vector bundle, C ×W , is isomorphic

to O⊕m
C . We obtain a homomorphism β :W ∼= O⊕m

C → G of OC-modules by

βU(f1, . . . , fm) =
m
∑

i=1

fi · wi|U

for any open set U ⊂ C. The homomorphism H0(β) : H0(W) → H0(G)

identifies H0(W) with W ⊂ H0(G).

The composition βi := qi ◦ γ ◦ β : W → O induces a morphism in

Coh(C), η : W → O⊕2 with pri ◦η = βi. So η is given by a constant

matrix and this implies H0(η)(H0(W)) = H0(im η) ⊂ H0(O⊕2). Hence

η : (W, H0(W)) → (O⊕2, H0(O⊕2)) is a strict morphism. Again a ◦ η :

(W,W ) → (F , V ) satisfies qi ◦ a ◦ η = βi, which is also true for γ ◦ β :

(W,W ) → (F , V ) but a ◦ η 6= γ ◦ β is a contradiction to the uniqueness of

the universality of (F , V ). This implies that G = 0.

Hence F = O⊕2 and V = H0(O⊕2). But now we obtain a contradiction

with the universal property of (F , V ) as follows. Consider a coherent system

(O⊕2, L) where L ⊂ H0(O⊕2) is a one-dimensional linear subspace such that

L 6= ker(H0(pr1)) and L 6= ker(H0(pr2)). These assumptions ensure that L

maps surjectively onto H = H0(O) under H0(q1) and H0(q2). Consider the
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following diagram

(O, H)

(O⊕2, L)

pr1
66nnnnnnnnnnnn

a //

pr2 ((PPPPPPPPPPPP
(O⊕2, H0(O⊕2))

q1

OO

q2

��
(O, H)

where a is the unique strict morphism given by the universal property. By

the universal property of O⊕2 in Coh(C) we get that a must be the identity.

But then we would have that H0(a)(L) = H0(O⊕2) which is impossible, since

L is one-dimensional and H0(O⊕2) is two-dimensional. This implies that a

product (O, H)× (O, H) does not exist in CohSysst(C).

Hence we conclude that there does not exist a product for every pair of

objects in the category CohSysst(C) and so it fails at Axiom 2 for a category

to be abelian (Definition 1.4.27).

To sum up, we have shown that CohSys(C) is not an abelian cate-

gory, as not all morphisms are strict in this category. We then showed that

CohSysst(C) is also not an abelian category because there does not exist

a product for every pair of objects. One possible way of overcoming this

problem is to consider CohSys(C) as an additive subcategory of an appro-

priate abelian category, C(C). In [KN] such a category is defined. Its objects

consist of a finite dimensional vector space V , a coherent sheaf, E and a sheaf

morphim ϕ : V → E , where V is the sheaf of sections of the trivial vector

bundle C × V . A morphism in this category is a commutative diagram of

morphisms of coherent sheaves

V1
ϕ1 //

��

E1

��
V2

ϕ2 // E2

where Vi is the sheaf of sections of the trivial vector bundle C×Vi for i = 1, 2.
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This category C(C) is a full subcategory of the category of holomorphic triples

which is studied in the next chapter.
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Chapter 5

Holomorphic triples

We will now study stability of another another object, namely a holomorphic

triple, as an extenstion of coherent sheaves in the hope of defining Bridgeland

stability conditions on triples. We begin with some preliminaries.

5.1 Preliminaries

Let us first give a definition of a triple.

Definition 5.1.1. A holomorphic triple T = (E1, E2, φ) on X, a compact

Riemann surface, consists of two coherent sheaves, E1 and E2, on X and a

sheaf morphism φ : E1 → E2.

Definition 5.1.2. A homomorphism of triples, f : T ′ → T from T ′ =

(E ′
1, E

′
2, φ

′) to T = (E1, E2, φ) is a commutative diagram

E ′
1

φ′

−−−→ E ′
2





y





y

E1
φ

−−−→ E2

where the vertical arrows are (OX -linear) sheaf morphisms.
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We denote by T Coh(X), the category in which the objects are triples

and the morphisms are homomorphisms of triples. This category has a zero

object, i.e. the zero triple T = 0 obtained by taking E1 = E2 = 0, the zero

object in Coh(X). We check that this really is the zero object of T Coh(X)

as in Definition 1.4.5. We need that for any triple, there is exactly one

morphism to and from T = 0. Let f : 0→ T ′ be a morphism in T Coh(X),

i.e. we have the following commutative diagram

0 −−−→ 0




y





y

E ′
1

φ′

−−−→ E ′
2

in which the vertical arrows are the zero morphisms in Coh(X). Hence f

is unique. Similarly we can show that g : T ′ → 0 is unique and so we have

T = 0 is the zero object in T Coh(X).

Definition 5.1.3. A triple T ′ = (E ′
1, E

′
2, φ

′) is a subtriple of T = (E1, E2, φ)

if:

(a) E ′
i is a coherent subsheaf of Ei, for i = 1, 2 and

(b) we have the commutative diagram

E ′
1

φ′ //
� _

��

E ′
2� _

��
E1

φ // E2

The category, T Coh(X) has kernels and cokernels, described as follows:

Kernel : Let T = (E1, E2, φ) and T ′ = (E ′
1, E

′
2, φ

′) be two objects in

T Coh(X) and let f : T ′ → T be a morphism, given by the following com-

mutative diagram

E ′
1

φ′ //

f1

��

E ′
2

f2

��
E1

φ // E2
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Let the kernel of f be the morphism, i : K → T ′, with K = (K1, K2, ψ),

where K1 := ker(E ′
1 → E1) and K2 := ker(E ′

2 → E2) and ψ : K1 → K2 is

the unique morphism induced by φ′, i.e. φ′ restricted to K1.

Let us show that i : K → T ′ is a morphism of triples, i.e. that we have a

commutative diagram

K1
ψ //

� _

i1
��

K2� _

i2
��

E ′
1

φ′ // E ′
2

(5.1)

with i1 and i2 being sheaf morphisms. This follows from the universal prop-

erty of the kernel of f2 : E ′
2 → E2 as follows: we know that for any morphism

e : K1 → E2 such that f2◦e = 0, we have i2◦ψ = e for a unique ψ : K1 → K2.

Now if we let e := φ′ ◦ i1, then we have f2 ◦ φ′ ◦ i1 = φ ◦ f1 ◦ i1 = 0, since

K1 is the kernel of f1 (hence f1 ◦ i1 = 0). Hence, we get i2 ◦ ψ = φ′ ◦ i1,

i.e. i : K → T ′ really is a morphism of triples.

Now we need to verify that the morphism, i : K → T ′ satisfies the

universal property of a kernel, i.e. given another morphism g : U → T ′ with

U = (U1, U2, ϕ)

U1
ϕ //

g1

��

U2

g2

��
E ′

1

φ′ //

f1

��

E ′
2

f2

��
E1 φ

// E2

such that fg = 0, we must show that this factors uniquely through K as

g = ie′ for a unique e′ : U → K, i.e. that there exists a unique e′ such that
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the following diagram commutes

U1

e′1 //___

g1   A
AA

AA
AA

A
K1

ψ //

i1
��

K2

i2
��

U2

e′2oo_ _ _

g2~~}}
}}

}}
}}

E ′
1

φ′ //

f1
��

E ′
2

f2
��

E1
φ // E2

We know e′1 and e′2 exist and are unique in Coh(X), as this is an abelian

category. So it remains to show that e′ is a morphism in T Coh(X), i.e. that

U1
ϕ //

e′1
��

U2

e′2
��

K1
ψ // K2

commutes. This follows from the universal property of the kernel of f2 :

E ′
2 → E2 as follows: we know we have h : U1 → E ′

2 such that f2h = 0, where

h = φ′ ◦ i1 ◦ e′1 (we know f2h = 0 since f2 ◦φ′ ◦ i1 ◦ e′1 = φ ◦ f1 ◦ i1 ◦ e1 = 0, as

i1 is the kernel of f1). The universal property then tells us that there exists

a unique morphism from U1 → K2 whose composition with i2 is equal to h,

hence e′2 ◦ ϕ = ψ ◦ e′1 is this unique morphism.

Cokernel : Let T = (E1, E2, φ) and T ′ = (E ′
1, E

′
2, φ

′) be two objects in

T Coh(X) and f : T ′ → T a morphism, given by the following commutative

diagram

E ′
1

φ′ //

f1

��

E ′
2

f2

��
E1

φ // E2

Let the cokernel of f be the morphism p : T → C, with C = (C1, C2, ϕ),

where C1 := coker(E ′
1 → E1) and C2 := coker(E ′

2 → E2) and ϕ : C1 → C2

the morphism induced by φ.

We must verify that p : T → C really is a morphism in T Coh(X) and

that the morphism, i : K → T ′ satisfies the universal property of a cokernel,
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i.e. given another morphism g : T → U with U = (U1, U2, ψ)

E ′
1

φ′ //

f1

��

E ′
2

f2

��
E1

φ //

g1

��

E2

g2

��
U1 ψ

// U2

such that gf = 0, we must show that this factors through C as g = g′p for a

unique g′ : C → U i.e. that there exists a unique e′ such that the following

diagram commutes

E ′
1

φ′ //

f1
��

E ′
2

f2
��

E1
φ //

p1

��

g1

~~}}
}}

}}
}}

E2

p2

��

g2

  A
AA

AA
AA

A

U1 C1
g′1

oo_ _ _
ϕ // C2

g′1 //___ U2

(5.2)

The proof uses the universal property of the cokernel of f1 : E ′
1 → E1 in

Coh(X) and is similar to the one for the kernel so we do not go through the

details.

Lemma 5.1.4. A morphism f : T ′ → T given by the following commutative

diagram

E ′
1

φ′ //

f1

��

E ′
2

f2

��
E1

φ // E2

is an epimorphism in T Coh(X) if and only if f1 and f2 are epimorphisms

in Coh(X).

Proof. Let f : T ′ → T be a morphism in T Coh(X) and let g, g′ : T → V be

two morphisms where V = (V1, V2, ϕ), so we have the following commutative
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diagrams

E ′
1

φ′ //

f1
��

E ′
2

f2
��

E ′
1

φ′ //

f1
��

E ′
2

f2
��

E1
φ //

g1

��

E2

g2

��

E1
φ //

g′1
��

E2

g′2
��

V1 ϕ
// V2 V1 ϕ

// V2

Assume that f1 and f2 are epimorphisms in Coh(X). By definition, this

implies that if g1f1 = g′1f1, then g1 = g′1 and if g2f2 = g′2f2, then g2 = g′2.

Now if g1f1 = g′1f1 and g2f2 = g′2f2, then we have gf = g′f in T Coh(X).

This in turn implies that g = g′ in T Coh(X) (since g1 = g′1 and g2 = g′2).

Hence f is an epimorphism in T Coh(X).

Conversely, assume that f is a epimorphism in T Coh(X). In order to

show that f1 : E ′
1 → E1 is an epimorphism in Coh(X) we start with two

morphisms g1, g
′
1 : E1 → V1 such that g1f1 = g′1f1. This gives us two com-

mutative diagrams

E ′
1

φ′ //

f1

��

E ′
2

f2

��

E ′
1

φ′ //

f1

��

E ′
2

f2

��
E1

φ //

g1

��

E2

0

��

E1
φ //

g′1
��

E2

0

��
V1 0

// 0 V1 0
// 0

where g1f1 = g′1f1. Now since f is an epimorphism in T Coh(X), we get that

g1 = g′1 and so f1 is an epimorphism in Coh(X).

Similarly we can show that f2 : E2 → E ′
2 is an epimorphism in Coh(X)

Assume we have two morphisms g2, g
′
2 : E2 → V2 such that g2f2 = g′2f2. This
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gives us two commutative diagrams

E ′
1

φ′ //

f1
��

E ′
2

f2
��

E ′
1

φ′ //

f1
��

E ′
2

f2
��

E1
φ //

g2φ

��

E2

g2

��

E1
φ //

g′2φ

��

E2

g′2
��

V2 V2 V2 V2

where g2φf1 = g′2φf1 and g2f2 = g′2f2. Now since f is an epimorphism in

T Coh(X), we get that g2 = g′2 and so f2 is an epimorphism in Coh(X).

Lemma 5.1.5. A morphism f : T ′ → T given by the following commutative

diagram

E ′
1

φ′ //

f1

��

E ′
2

f2

��
E1

φ // E2

is an monomorphism in T Coh(X) if and only if f1 and f2 are monomor-

phisms in Coh(X).

Proof. The proof is similar to Lemma 5.1.4.

5.2 Stability

We have seen in Chapter 4 that the stability notion for coherent systems

depends on a real parameter. The same is true for the notion of stability for

holomorphic triples.

Definition 5.2.1. For any real number α, the α-degree of a triple T =

(E1, E2, φ), with rk(E1) = r1, rk(E2) = r2 is

degα(T ) = deg(E1 ⊕E2) + αr1,

= deg(E1) + deg(E2) + αr1,
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and the α-slope of T is

µα(T ) =
degα(T )

r1 + r2
.

Definition 5.2.2. The triple T = (E1, E2, φ) is called α-stable (resp. α-

semi-stable) if for all nontrivial subtriples (i.e. all subtiples of T except the

zero triple and T itself) T ′ = (E ′
1, E

′
2, φ

′) of T we have

µα(T
′) < µα(T ) (resp. ≤).

S. Bradlow, O. Garćıa-Prada, P. Gothen and others have studied the

moduli space of stable triples (see [BG2] and [BGG]) and have shown how

these moduli spaces depend on the real parameter α.

5.3 Bridgeland stability conditions

5.3.1 Is T Coh(X) an abelian category?

We now want to see if the stability of triples fits into the framework of

Bridgeland stability conditions, as outlined in Chapter 3. To begin with, we

must ensure that the T Coh(X), forms an abelian category. Let us now go

through the axioms of an abelian category (Definition 1.4.27):

1. The category T Coh(X) has a zero object, T = 0.

2. For every pair of objects there is a product.

Given a pair of objects T ′ = (E ′
1, E

′
2, φ

′) and T = (E1, E2, φ), we construct

the product P = (P1, P2, ϕ) of T ′ and T as follows:

P1 := E ′
1 ⊕ E1

P2 := E ′
2 ⊕ E2

ϕ := (φ′, φ)
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Firstly, we must show that there exists morphisms p1 : P → T ′ and p2 : P →

T . Consider p1 as the following commutative diagram

P1
ϕ //

p11

��

P2

p12

��
E ′

1

φ′ // E ′
2

Let p11 and p12 be projections to the first factor - these are sheaf morphisms.

Clearly, the above diagram is commutative.

Similarly, we can define p2 to be a morphism in T Coh(X) given by the

following commutative diagram

P1
ϕ //

p21

��

P2

p22

��
E1

φ // E2

where p21 and p22 are projections to the second factor.

Now we must show that for every pair of morphisms X = (X1, X2, ψ)→

T ′ and X → T , given by the following commutative diagrams

X1
ψ //

��

X2

��

X1
ψ //

��

X2

��
E ′

1

φ′ // E ′
2 E1

φ // E2

there is a unique X → P such that

T ′

X

>>}}}}}}}}
//___

  A
AA

AA
AA

A P

OO

��
T
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commutes, i.e. the following commutes

E ′
1

φ′ // E ′
2

X1

>>}}}}}}}}
//___

  B
BB

BB
BB

B
P1

//

p11

OO

p21

��

P2

p12

OO

p22

��

X2
oo_ _ _

``AAAAAAAA

~~||
||

||
||

E1
φ // E2

Since the category of Coh(X) is abelian, we know that there exists unique

morphism X1 → P1 and X2 → P2 making the four triangles above commu-

tative. It remains to show that

X1
ψ //

��

X2

��
P1

ϕ // P2

commutes, i.e. is a morphism in T Coh(X). This follows from the definition

of the P2 (i.e. the product of E ′
2 and E2). Since we are given morphisms

x : X1 → E2 and y : X1 → E ′
2, we get a unique morphism f : X1 → P2 so

that x = p12f and y = p22f . Hence the above diagram commutes.

3. Every morphism has a kernel and cokernel.

This was shown in Section 5.1.

4. Every epimorphism is the cokernel of its kernel.

Recall from Lemma 5.1.4 that a morphism f : T ′ → T is an epimorphism

in T Coh(X) if and only if f1 and f2 are epimorphisms in Coh(X). Assume

f : T ′ → T is an epimorphism in T Coh(X). We want to show that this is

the cokernel of its kernel. Since Coh(X) is an abelian category, we know

this is true here. So we have

E ′
1

φ′ //

f1

��

E ′
2

f2

��
E1

φ // E2
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with E1 = C1 (the cokernel of K1 → E ′
1, where K1 is the kernel of f1 : E ′

1 →

E1 in Coh(X)). Similarly, E2 = C2 (the cokernel of K2 → E ′
2, where K2 is

the kernel of f2 : E ′
2 → E2).

So we have

K1
//

��

K2

��
E ′

1

φ′ //

��

E ′
2

��
C1 φ

// C2

Now from the construction of the cokernel described in Section 5.1 above,

we know that φ is the morphism iduced by φ′ and so we see that f is the

cokernel of its kernel in T Coh(X).

5. Every monomorphism is the kernel of its cokernel.

Recall from Lemma 5.1.5 that the morphism f : T ′ → T is a monomor-

phism in T Coh(X) if and only if f1 and f2 are monomorphisms in Coh(X).

So now let us assume that we are given f : T ′ → T a monomorphism in

T Coh(X). We want to show that this is the kernel of its cokernel. Since the

Coh(X) is an abelian category, we know this is true here. So we have

E ′
1

φ′ //

f1
��

E ′
2

f2
��

E1
φ // E2

with E ′
1 = K1 (the kernel of E1 → C1, where C1 is the cokernel of f1 : E ′

1 →

E1 in Coh(X)). Similarly, E ′
2 = K2 (the kernel of E2 → C2, where C2 is the
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cokernel of f2 : E ′
2 → E2). So we have the following commutative diagram

K1
φ′ //

f1
��

K2

f2
��

E1
φ //

��

E2

��
C1

// C2

where φ′ is the φ restircted to K1. Hence f is the cokernel of its kernel in

T Coh(X).

Hence, all of the axioms are satisfied and so we have the following propo-

sition.

Proposition 5.3.1. T Coh(X) is an abelian category.

5.3.2 Grothendieck group

Throughout this section C will denote a smooth projective curve, unless

otherwise specified. We have seen in Chapter 3, Example 3.1.2 (and Propo-

sition 3.1.10) that the Grothendieck group of the derived category of coherent

sheaves on C, K(C) = Z ⊕ Pic(C). We write K(T ) for the Grothendieck

group of T Coh(C). We begin with the following lemma that will be useful

in proofs.

Remark 5.3.2. We normally write a triple T = (E1, E2, φ) as follows: E1 →

E2. However, for convenience, when depicting short exact sequences of triples

we write a triple as follows:

E1

��
E2

Note that a morphism of triples then changes accordingly. This notation will

only be used in short exact sequences of triples.
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Lemma 5.3.3. Any triple T ∈ T Coh(C) where T = (E1, E2, φ) can be

placed in a short exact sequence as follows

0 // 0 //

��

E1

φ

��

E1
//

��

0

0 // E2 E2
// 0 // 0

(5.3)

Proof. Let T ′ = (0, E2, 0) and T ′′ = (E1, 0, 0) then we have the following

0 // T ′
f // T

g // T ′′ // 0

By Definition 1.4.11, if im(f) = ker(g) and if f is a monomorphism and g

is an epimorphism, then (5.3) is a short exact sequence. The morphism f is

given by the following commutative diagram

0
f1 //

��

E1

φ

��
E2

f2
E2

Clearly f1 and f2 are monomorphisms in Coh(C). Hence, by Lemma 5.1.5, f

is a monomorphism. Similarly we can show that g is an epimorphism (using

Lemma 5.1.4).

Now since every monomorphism is the kernel of its cokernel in T Coh(C),

then by definition of image we have that im(f) = T ′. It remains to show

that T ′ = ker(g). By definition the kernel of g : T → T ′′ is i : K → T given

by the following commutative diagram

K1
//

��

E1

��

g1
E1

��
K2

// E2
g2 // 0

where K1 and K2 are the kernels of g1 and g2 in Coh(C). Hence clearly

K1 = 0 and K2 = E2. So clearly we have T ′ = ker(g).

Lemma 5.3.4. On C, a smooth projective curve, K(T ) ∼= K(C)⊕K(C)
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Proof. Each T = (E1, E2, φ) ∈ T Coh(C) defines an element [T ] ∈ K(T ).

We know from Lemma 5.3.3 that we can place T in a short exact sequence

as follows:

0 // 0 //

��

E1

φ

��

E1
//

��

0

0 // E2 E2
// 0 // 0

So in K(T ), we have

[ E1
φ // E2 ] = [ 0 // E2 ] + [ E1

// 0 ]

Now let us define a map

f : K(T )→ K(C)⊕K(C), [T ] 7→ ([E1], [E2])

Clearly this is a well-defined homomorphism of groups. We can give the

inverse of f by

([E1], [E2]) 7→ [E1 → 0] + [0→ E2].

Hence we have an isomorphism

K(T ) ∼= K(C)⊕K(C)

So we conclude

K(T ) ∼= Z
2 ⊕ Pic(C)⊕2

Now we want to compute the numerical Grothendieck group of T Coh(C),

denoted N (T ), where C is an elliptic curve. We have seen (Example 3.1.15)

that the numerical Grothendieck group of the derived category of coherent

sheaves on an elliptic curve C is N (C) = Z2. Denote the bounded derived

category of holomorphic triples on C by D(T ). From now on C, will denote

an elliptic curve. We begin with some lemmas.

Lemma 5.3.5. (i) HomD(T )(0→ E2, E1[i]→ 0) = 0 for all i ∈ Z.

(ii) HomD(T )(E1 → 0, 0→ E2) = 0.

(iii) HomD(T )(E1 = E1, 0→ E2[i]) = 0 for all i ∈ Z.
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Proof. For the purpose of this proof we will depict the triples vertically. We

know morphisms in T Coh(C) are roofs (see Definition 1.4.47 and Remark

1.4.48).

(i) Let the roof

0

��

F •
1

ϕ

��

s1oo f1 // E1[i]

��
E2 F •

2s2
oo

f2

// 0

(5.4)

represent a homomorphism in HomD(T )(0 → E2, E1[i] → 0). Here s1 and

s2 are quasi-isomorphisms. The same morphism is represented by any roof

obtained by composing the above with quasi-isomorphisms h1, h2:

F̃1
•

��

h1 // F •
1

ϕ

��

F̃2
• h2 // F •

2

Because s1 : F •
1 → 0 is a quasi-isomorphism, we can choose F̃1

•
= 0, F̃2

•
=

F •
2 and obtain a commutative diagram whose horizontal arrows are quasi-

isomorphisms:

0

��

h1 // F •
1

ϕ

��
F •

2
h2 F •

2

Therefore, the above morphism (5.4) can also be represented by

0

��

0

��

0oo 0 // E1[i]

��
E2 F •

2s2
oo

f2=0
// 0

(5.5)

where h1 ◦ s1 = 0, h1 ◦ f1 = 0, h2 ◦ s2 = s2, h2 ◦ f2 = f2 = 0. Hence the

morphism (5.5) is zero.

(ii) This is clear because by Remark 1.4.49

HomD(T )(T, T
′) = HomT Coh(C))(T, T

′)
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for objects T, T ′ of T Coh(C)).

(iii) Let the roof

E1 F •
1

ϕ

��

s1oo f1 // 0

��
E1 F •

2s2
oo

f2

// 0

represent a homomorphism in HomD(T )(E1 = E1, 0 → E2[i]). Again, s1 and

s2 are quasi-isomorphisms. This implies that ϕ is a quasi-isomorphism as

well. Hence we can compose with

F •
1 F •

1

ϕ

��
F •

1

ϕ // F •
2

so that the morphism above is also represented by

E1 F •
1

s1oo f1=0 // 0

��
E1 F •

1s2◦ϕ
oo

f2◦ϕ
// E2[i]

The commumativity of the right square gives f2 ◦ ϕ = 0, hence this roof

represents the zero morphism.

Lemma 5.3.6. If E1, E1 ∈ Coh(C), i ∈ Z then

HomD(C)(E1, E2[i]) ∼= HomD(T )(E1 → 0, 0→ E2[i+ 1]).

In particular, if C is a smooth curve,

HomD(C)(E1, E2) ∼= HomD(T )(E1 → 0, 0→ E2[1]).

and HomD(T )(E1 → 0, 0→ E2[i]) = 0 for all i 6= 1, 2 and

Ext1
Coh(C)(E1, E2) ∼= HomD(T )(E1 → 0, 0→ E2[2]).
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Proof. Applyling the contravariant functor HomD(T )(−, T ), where the triple

T = (0, E2, 0), to the distinguished triangle in D(T ) which corresponds to

the short exact sequence in T Coh(C)

0 // 0 //

��

E1 E1

��

0

0 // E1 E1
// 0 // 0

we obtain exact sequences for all i ∈ Z:

HomD(T )(E1 = E1, T [i]) −−−→ HomD(T )(0→ E1, T [i]) −−−→

HomD(T )(E1 → 0, T [i+ 1]) −−−→ HomD(T )(E1 = E1, T [i+ 1]) −−−→

where HomD(T )(E1 = E1, T [i]) = 0 and HomD(T )(E1 = E1, T [i + 1]) = 0 by

Lemma 5.3.5. Hence we have

HomD(T )(0→ E1, 0→ E2[i]) ∼= HomD(T )(E1 → 0, 0→ E2[i+ 1])

The Euler form on T Coh(C) is

χ(T, T ′) =
∑

i

(−1)i dimC HomD(T, T ′[i]),

where T, T ′ ∈ T Coh(C) and D = Db(T Coh(C)).

Proposition 5.3.7. Sending [E1 → E2] to (r1, d1, r2, d2) gives an isomor-

phism N (T )
∼
−→ Z

4, where ri = rk(Ei), di = deg(Ei) for i = 1, 2.

Proof. We can place T = (E1, E2, φ) in a short exact sequence as follows

(Lemma 5.3.3):

0 // 0 //

��

E1

φ

��

E1
//

��

0

0 // E2 E2
// 0 // 0

Define functors I1 : Coh(C) → T Coh(C) given by I1(E1) = E1 → 0 and

I2 : Coh(C) → T Coh(C) given by I2(E2) = 0 → E2. Since χ(−, T ′) is an
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additive function on exact sequences, from the short exact sequence above,

we get

χ(T, T ′) = χ(I2(E2), T
′) + χ(I1(E1), T

′)

We can also place T ′ = (E ′
1, E

′
2, φ

′) in a short exact sequence as follows:

0 // 0 //

��

E ′
1

φ′

��

E ′
1

//

��

0

0 // E ′
2 E ′

2
// 0 // 0

So we get

χ(T, T ′) = χ(I2(E2), I1(E
′
1)) + χ(I2(E2), I2(E

′
2))

+χ(I1(E1), I1(E
′
1)) + χ(I1(E1), I2(E

′
2)).

From Lemma 5.3.5 (i), we have that Hom(0 → E2, E
′
1[i] → 0) = 0 for all

i ∈ Z, hence χ(I2(E2), I1(E
′
1)) = 0. So now we have

χ(T, T ′) = χ(I2(E2), I2(E
′
2)) + χ(I1(E1), I1(E

′
1)) + χ(I1(E1), I2(E

′
2)).

By defintion we know

χ(I1(E1), I2(E
′
2)) =

∑

i

(−1)i dimC HomD(I1(E1), I2(E
′
2)[i]).

Then by Lemma 5.3.6, we have

χ(I1(E1), I2(E
′
2)) =

∑

i

(−1)i dimC HomD(C)(E1, E
′
2[i− 1])

= −
∑

i

(−1)i−1 dimC HomD(C)(E1, E
′
2[i− 1]) = −χ(E1, E2),

where D(C) denotes the bounded derived category of coherent sheaves on C.

From this we get

χ(T, T ′) = χ(E2, E
′
2) + χ(E1, E

′
1)− χ(E1, E

′
2).
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By Riemann-Roch (see again Example 3.1.15), we then get

χ(T, T ′) = r2d
′
2 − r

′
2d2 + r1d

′
1 − r

′
1d1 − r1d

′
2 + r′2d1

where ri := rk(Ei), di := deg(Ei), r
′
i := rk(E ′

i) and d′i := deg(E ′
i) for i = 1, 2

and where Ei, E
′
i ∈ Coh(C).

Now by definition T ∈ K(T )⊥ if and only if χ(T, T ′) = 0 for all T ′ ∈

K(T ). We can see that χ(T, T ′) = 0 for all T ′ if and only if r1 = 0, d1 =

0, r2 = 0 and d2 = 0. This means that the kernel of K(T ) → Z4, given by

[T ] 7→ (rk(E1), deg(E1), rk(E2), deg(E2)), where T = (E1, E2, φ) is K(T )⊥.

Hence we get a short exact sequence

0→ K(T )⊥ → K(T )→ Z
4 → 0

and so K(T )/K(T )⊥ ∼= Z
4, i.e. N (T ) ∼= Z

4.

Note that the result of the calculation

χ(T, T ′) = r2d
′
2 − r

′
2d2 + r1d

′
1 − r

′
1d1 − r1d

′
2 + r′2d1

above can also be found in [BGG] Proposition 3.2.

5.3.3 Stability conditions

The functors Iν : Coh(C)→ T Coh(C) for ν = 1, 2 induce homomorphisms

of groups

iν : K(C)→ K(T ) ∼= K(C)⊕K(C)

where i1([E]) = [E → 0] and i2([E]) = [0 → E]. In terms of identifica-

tions K(C) ∼= Z2, [E] 7→ (rk(E), deg(E)) and K(T ) ∼= Z4, [E1 → E2] 7→

(rk(E1), deg(E1), rk(E2), deg(E2)), these are just the inclusions

i1 : Z
2 →֒ Z

4 i1(a, b) = (a, b, 0, 0)

and

i2 : Z
2 →֒ Z

4 i2(a, b) = (0, 0, a, b).

If Z : K(T )→ C is a stability function, we denote Zν := Z ◦ iν : K(C)→ C.
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Lemma 5.3.8. Let Z : K(T ) → C be a stability function on the abelian

category T Coh(C).

(i) Z1 and Z2 are stability functions on Coh(C).

(ii) If Z has the Harder-Narasimhan property on T Coh(C) then Z1 and

Z2 have the Harder-Narasimhan property on Coh(C).

Proof. (i) This is clear, because Z1([E]) = Z([E → 0]) and Z2([E]) = Z([0→

E]) and both are in the strict upper half-plane.

(ii) If E is a coherent sheaf on C, by assumption the triple E → 0

has a Harder-Narasimhan filtration (with respect to Z). Because the only

subobject of 0 is 0, the objects of this filtration are triples of the form Ei → 0.

Now Z([Ei/Ei−1 → 0]) = Z1(Ei/Ei−1]), hence it follows that the Ei form a

Harder-Narasimhan filtration for E. The proof for Z2 is similar.

Lemma 5.3.9. If Z : K(T ) → C is a stability function with Harder-

Narasimhan property such that the induced slicing on T Coh(C) is locally

finite, then (using the identification K(T ) ∼= Z4 introduced above):

Z(r1, d1, r2, d2) = −A1d1 −A2d2 +B1r1 +B2r2 + i(C1r1 + C2r2)

with real numbers Ai, Bi, Ci satisfying A1 > 0, A2 > 0, C1 > 0 and C2 > 0.

Proof. Because Zν : Z2 → C is a homomorphism of groups, there exists real

numbers Aν , Bν , Cν , Dν such that Zν(r, d) = −Aνd+Bνr+ i(Cνr +Dνd). If

P0 ∈ X is a point and n ∈ Z, the line bundle O(nP0) has degree n. Since

Zν is a stability function, then Zν([O(nP0)]) = Zν(1, n) is in the strict upper

half-plane, i.e. Cν + nDν ≥ 0 for all n ∈ Z. Hence, Dν = 0 and Cν ≥ 0.

On the other hand, the torsion sheaf CP0, which sits in an exact sequence

0→ O(−P0)→ O → CP0 → 0,

has rank 0 and degree 1. Thus, Zν(0, 1) = −Aν has to be in the strict upper

half-plane as well. This implies Aν > 0.

If we had Cν = 0, for each E ∈ Coh(C) we obtained Z([E → 0]) =

Z1([E]) ∈ R (if ν = 1) or Z([0 → E]) = Z2([E]) ∈ R (if ν = 2). If P
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denotes the slicing induced by Z on T Coh(C), we obtain Coh(C) ⊂ P(1).

But Coh(C) is not of finite length, hence P would not be locally finite.

Therefore, we must have Cν > 0.

Proposition 5.3.10. If Ai, Bi, Ci (for i = 1, 2) are real numbers such that

A1 > 0, A2 > 0, C1 > 0 and C2 > 0, then

Z(r1, d1, r2, d2) := −A1d1 − A2d2 +B1r1 +B2r2 + i(C1r1 + C2r2)

is a stability function on T Coh(C) which has the Harder-Narasimhan prop-

erty and the corresponding slicing is locally finite.

Proof. Let E1 → E2 be an object of T Coh(C) and let ri = rk(Ei) and

di = deg(Ei) for i = 1, 2. We know r1 ≥ 0 and r2 ≥ 0, hence C1r1 +C2r2 ≥ 0

and this expression can only be zero if r1 = r2 = 0. In this case, E1 and

E2 are torsion sheaves, hence d1 ≥ 0 and d2 ≥ 0 and Z([E1 → E2]) =

−A1d1 − A2d2 ≤ 0. This can only be zero if d1 = d2 = 0, which happens if

E1 = E2 = 0. This shows that Z is in fact a stability function.

In order to prove the Harder-Narasimhan property, we are going to apply

Proposition 3.1.8. We first show that if E1 → E2 is a given triple, then the

set of real numbers

{φ(F1 → F2)|F1 → F2 is a subtriple of E1 → E2 and

φ(F1 → F2) > φ(E1 → E2)}

is finite. Let us denote r0
i := rk(Ei), d

0
i := deg(Ei) and ri := rk(Fi), di :=

deg(Fi) for i = 1, 2. If F1 → F2 is a subtriple of E1 → E2, then 0 ≤ ri ≤ r0
i

and ri ∈ Z. Hence, for subtriples of the fixed triple E1 → E2, the expression

B1r1 +B2r2 + i(C1r1 + C2r2)

takes only finitely many values. In particular, there exist real numbers b < B

and 0 ≤ c < C such that b ≤ B1r1 +B2r2 ≤ B and c ≤ C1r1 + C2r2 ≤ C for

all subtriples of E1 → E2.
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On the other hand, the degrees of all subsheaves of Ei is bounded above

(as in Lemma 2.1.32), i.e. there exist integers Dν with dν ≤ Dν for all sub-

triples F1 → F2 of E1 → E2. Hence, the expression −A1d1−A2d2 is bounded

below. Hence Re(Z([F1 → F2])) (i.e. the real part of the complex number) is

bounded below for subtriples of E1 → E2. This means that Z([F1 → F2]) is

in the enclosed trapezoid area of the diagram below for all subtriples F1 → F2

of E1 → E2 for which we have φ(F1 → F2) > φ(E1 → E2)

6

-�
�
�
��
r

Z(E)

Re

Im

In particular, there exists a real number M such that Re(Z([F1 → F2])) < M

for all subtriples F1 → F2 as above. Hence, −A1d1 −A2d2 < M − b and so

−A1d1 < M − b+ A2d2 ≤M − b+ A2D2

as well as

−A2d2 < M − b+ A1d1 ≤M − b+ A1D1.

Because Aν > 0 this shows that the integers d1 and d2 are bounded below.

Therefore, the expression −A1d1 − A2d2 takes only finitely many values for

those subtriples F1 → F2 of E1 → E2 for which we have φ(F1 → F2) >

φ(E1 → E2). Hence, Z takes only finitely many values on this set and so the

number of different slopes is finite as well. This shows that there does not

exist an infinite sequence of subobjects E1 → E2 in T Coh(C) with strictly

increasing slope.

The proof that there does not exist an infinite sequence of epimorphisms

in T Coh(C) with strictly decreasing slopes is similar. The main difference is

that there exists lower bounds for quotients of a given coherent sheaf, which

follows from the exact sequence

0→ K → E → Q→ 0

and the additivity of the degree. The picture looks now like this
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6

-A
A

A
r

Z(E)

Re

Im

The proof of the local finiteness of the corresponding slicing uses a similar

argument.

Corollary 5.3.11. If Stab0(D) denotes the set of locally finite stability con-

ditions on D = Db(T Coh(C)) whose heart is T Coh(C) and if Stab0(C)

denotes the set of locally finite stability conditions on Db(Coh(C)) whose

heart is Coh(C), then

Stab0(D) = Stab0(C)× Stab0(C)

and this identification is given by Z 7→ (Z1, Z2).

Proof. Recall (Example 3.4.1) that G̃L
+
(2,R) acts transitively on Stab(C),

the set of all locally finite stability conditions. From this, it follows easily that

the stability functions which describe the elements of Stab0(C) are precisely

those of the form −Ad + Br + iCr with A > 0, C > 0. The statement now

follows from the previous proposition.

So we have taken the first steps to describing the space of stability condi-

tions on the category T Coh(C). We first showed that T Coh(X) is indeed

an abelian category, where X is a compact Riemann surface. We then de-

scribed the Grothendieck group and the numerical Grothedieck group of this

category. From here, we studied the stability functions on T Coh(C) (the

category of holomorphic triples on an elliptic curve C) and finally we showed

that

Stab0(D) = Stab0(C)× Stab0(C).

However, many interesting questions still remain open. Firstly, we saw

that a stability function Z on T Coh(C) with the Harder-Narasimhan prop-

erty is given by

Z(r1, d1, r2, d2) := −A1d1 −A2d2 +B1r1 +B2r2 + i(C1r1 + C2r2).
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Denote Zα to be the stability function where A1 = A2 = 1, B1 = α,B2 =

0, C1 = C2 = 1, i.e.

Zα(r1, d1, r2, d2) := −d1 − d2 − αr1 + i(r1 + r2).

The moduli space corresponding to this stability function was studied in

[BGG]. However, it would be interesting to see whether the other stability

functions, not of this form, give new moduli spaces.

Another problem that remains is to give a complete description for the

set, Stab(D), of locally finite stability conditions on D = Db(T Coh(C)). For

example, would it be true that

Stab(D) = Stab(C)× Stab(C)?

To answer this question would require a better understanding of more general

t-structures on D. It would also be interesting to study the relationship

between Stab(D) and stability conditions on coherent systems using the set

of locally finite stability conditions on the derived category of the category

C(C) (as described at the end of Chapter 4).

135



Bibliography

[Ar] D. Arcara: Stability Conditions on Derived Categories, available at

http://www.math.utah.edu/∼arcara/Bridgeland.pdf.

[At] M. F. Atiyah: Vector bundles over an elliptic curve, Proc. London Math.

Soc. (3) 7 (1957), 414–452.

[BBD] A. Beilinson, J. Bernstein and P. Deligne: Faisceaux Pervers, As-

triques 100, Soc. Math de France (1983).
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Newstead: On the Goemetry of Moduli Spaces of Coherent Systems on

Algebraic Curves, Int. J. Math. 18, No. 4 (2007), 411–453.

136



[Br01] T. Bridgeland: Stability Conditions on Triangulated Categories, Ann.

of Math., to appear, preprint available on arXiv:math.AG/0212237.

[Br02] T. Bridgeland: Spaces of Stability Conditions, preprint available on

arXiv:math.AG/0611510.

[Br03] T. Bridgeland: Stability conditions on K3 surfaces, preprint available

on arXiv/math.AG/0307164.

[BK] I. Burban and B. Kreussler: Derived categories of irreducible projective

curves of arithmetic genus one, Compos. Math. 142, No. 5 (2006), 1231–

1262.

[F] P. J. Freyd: Abelian Categories - An Introduction to the Theory of Func-

tors, Harper’s Series in Modern Mathematics, Harper & Row, Publish-

ers, London (2003).

[FS] P. J. Freyd and A. Scedrov: Categories, Allegories, North-Holland

Mathematical Library (1990).

[G] A. Gathmann: Algebraic Geometry, Notes for a class taught

at the University of Kaiserslauten (2002/2003), available at

http://www.mathematik.uni-kl.de/∼gathmann/class/alggeom-

2002/main.pdf.

[GM] S. I. Gelfand, Yu. I. Manin: Methods of Homological Algebra, Springer

Monographs in Mathematics, Springer-Verlag Berlin Heidelberg (2000).

[GH] P. Griffiths, J. Harris: Principles of algebraic geometry, John Wiley

and Sons Inc (1994).

[Gr] A. Grothendieck: Groupes de Classes des Categories Abelieannes et Tri-

angulees. Complexes Parfaits Semin. Geom. algebr. Bois-Marie 1965-66,

SGA 5, Lect. Notes Math. 589, Expose No.VIII (1977), 351–371.

137



[Ha] J. Harris: Algebraic Geometry, Springer Graduate Texts in Mathemat-

ics 133 (1992).

[H] R. Hartshorne: Algebraic Geometry, Graduate Texts in Mathematics,

Springer (1977).
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