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Abstract

This thesis investigates the nondegenerate solutions to the classical Yang-

Baxter equation. Such solutions were investigated by A.A Belavin and V.G

Drinfeld. In their seminal paper [4], they concluded that solutions to the

classical Yang-Baxter equation, for finite-dimensional simple Lie algebras

over the complex field C possessing this additional nondegeneracy property,

fall into three classes up to equivalence: elliptic, trigonometric or rational.

In this thesis, we outline the necessary preliminaries to formulate the classi-

cal Yang-Baxter equation in order to then reformulate the proofs of Belavin

and Drinfeld in a coordinate-free language. We then briefly look at the

associative Yang-Baxter equation and its relation to the classical equation.

Finally, we produce a SINGULAR library named ybe.lib which offers the

user a means to test whether or not an expression is a solution to the clas-

sical or associative Yang-Baxter equation.
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Introduction

Norwegian Sophus Lie (1842–1899) was a brilliant mathematician who be-

gan a new field of study by introducing what were later named Lie algebras.

He developed the theory of “finite and continuous groups” and in 1873, out-

lined a general theory of not necessarily commutative groups. In principle,

Lie’s theory reduced problems on Lie groups, of an analytic nature to al-

gebraic problems on Lie algebras, and this led to an intrinsic study of Lie

algebras. However, Lie did not pursue this and it was left to other mathe-

maticians to go in that direction. The first fundamental contributions were

due to Wilhelm Killing whose work from 1886-1890 focused on the classi-

fication of simple Lie algebras. When Killing started, he was aware of two

infinite classes, the Lie algebras of the special linear group SL(n,C) and of

the orthogonal groups O(n,C). Two years later he obtained the classifi-

cation we have today: four infinite classes (the classical Lie algebras) and

only finitely many other Lie algebras, now called the exceptional Lie alge-

bras and denoted E6, E7, E8, F4, G2 [7].

Elie Cartan’s thesis was the second fundamental contribution to Lie al-

gebra theory. There he proved the existence of all the exceptional simple

Lie algebras. Furthermore, a basic result in Cartan’s thesis is a criterion for

a Lie algebra to be semisimple (i.e. the direct sum of (commuting) simple

non-commutative subalgebras): namely, the Killing form is nondegenerate.

Cartan continued to study Lie algebras and produced many important pa-

pers on the theory of semisimple Lie algebras. Other major contributors to

the advance in the theory of semisimple Lie algebras include Hermann Weyl,

Harish-Chandra Mehrota, Henri Poincaré, and Friedrich Engel to name but

a few [14]. The study of Lie algebras has advanced much since then, in part

because of their interest to physicists. Applications were known as early

as the 1920s, with one of the earliest being the description of the electron

iii



iv

configuration of atoms.

The Yang-Baxter equation is an equation which was first introduced in

the field of statistical mechanics. It takes its name from the independent

works of C.N. Yang from 1968, and R.J. Baxter from 1971. It refers to a

principle in integrable systems taking the form of local equivalence transfor-

mations which appear in a variety of contexts, including electric networks,

knot theory and braid groups, and spin systems.

In 1967, in studying integrable systems in quantum mechanics, C.N.

Yang wrote down the matrix equation

A(u)B(u+ v)A(v) = B(v)A(u+ v)B(u) (1)

and gave an explicit solution in which A(u) and B(u) are rational functions

of u. This equation was also found by R.J. Baxter in 1972 when he studied a

different integrable problem in classical statistical mechanics. Equation (1)

has been extensively studied and has been named the Yang-Baxter equation

[9]. At an early stage the Yang-Baxter equation appeared in several differ-

ent guises in the literature, and sometimes its solutions have preceeded the

equation.

The Yang-Baxter equation is a highly nonlinear equation, and is very

difficult to be solved generally. It can be solved more easily if it is taken to

its limit as one of its parameters tends to zero. Solving this limiting equa-

tion may prove helpful in finding new solutions of the Yang-Baxter equation.

This equation is called the classical Yang-Baxter equation (CYBE) and it

is much easier to be solved than the Yang-Baxter equation. The CYBE

was first introduced by E.K. Sklyanin [22]. Compared to the Yang-Baxter

equation, it represents an important and simplified case since it can be for-

mulated in the language of Lie algebras. One of the directions of study in

this domain is the classification of solutions in the case of a simple complex

Lie algebra.

In [4], A.A. Belavin and V.G. Drinfeld investigate the nondegenerate

solutions of the CYBE for a finite-dimensional, simple Lie algebras over

the complex field C. The authors prove that the poles of a nondegenerate

solution form a discrete subgroup Γ ⊂ C and listed all solutions for rank

Γ = 2 (elliptic) and rank Γ = 1 (trigonometric). Concerning the first class,

the authors reduce the problem of finding nondegenerate elliptic solutions
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to the one of describing triples (L,A1, A2), where L is a simple Lie algebra,

A1 and A2 are commuting automorphisms of L of finite order, not having

common fixed nonzero vectors. Moreover, they prove that if such triples

exist then there is an isomorphism L ∼= sl(n). Belavin and Drinfeld also

succeeded in classifying the trigonometric solutions using the data from the

Dynkin diagram. Regarding rational solutions, (solutions with rank Γ = 0)

the authors give several examples associated with Frobenius subalgebras of

L and provide arguments in favour of the idea that there are too many ra-

tional solutions to try to list them. However, this problem was solved by A.

Stolin who reduced the problem of listing “non-trivial” rational solutions of

the CYBE to the classification of quasi-Frobenius subalgebras of L. There

are a number of articles on rational solutions to the CYBE provided by

Stolin, including [24, 25].

This thesis is motivated by the remarkable work of Belavin and Drinfeld

in the 1980’s. There are two main aims to the work of this thesis. The first

aim is to reformulate the proofs of the theorems of Belavin and Drinfeld

in a coordinate-free language. The second aim is to develop a computer

program which enables the user to verify whether or not an expression sat-

isfies the classical or associative Yang-Baxter equations. The associative

Yang-Baxter equation (AYBE) was introduced by M. Aguiar in [1, 2] and

again independently by A. Polishchuk in [19]. The algebraic meaning of the

AYBE is beyond the scope of this thesis but is explained in [1, 2] and uses

the notion of infinitesimal bialgebras.

The outline of the thesis is as follows: Chapters 1 and 2 serve as an

introduction to the area of Lie algebras. In Chapter 1 we provide a brief

overview of the fundamental concepts of Lie algebras, representations, the

Killing form and Cartan subalgebras. Chapter 2 provides further back-

ground information, now focusing on root systems and Dynkin diagrams as

well as the Universal Enveloping Algebra and the Casimir operator. Chap-

ters 3 through 5 detail the core computations performed for the main the-

orems of Belavin and Drinfeld that this thesis focuses on. In Chapter 3,

following the complex analysis preliminaries required, we consider a linear

map from L⊗L→ Hom(L,L) and a map from L⊗L⊗L→ Hom(L⊗L,L),

both of which are induced by the Killing form κ on the simple Lie algebra

L. The remainder of this chapter is devoted to proving basic properties of

these maps which are required in later chapters. In Chapter 4 the ideas

from the preceding chapters are gathered to give a detailed account of the
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results found in [4]. A new feature of the present work is the language used

to obtain these results, we replace the proofs of Belavin and Drinfeld, which

use basis elements of the Lie algebra, with a language which uses the linear

maps outlined above. The aim of this chapter is to reformulate the proof

in [4] of the equivalence of 4 characterisations of nondegeneracy. Chapter 5

presents the main theorem we wish to prove: that nondegenerate solutions

fall into three classes up to equivalence: elliptic, trigonometric and rational.

We also give a brief outline of elliptic, trigonometric, and rational solutions

with several examples of the latter two types of solution. Chapter 6 intro-

duces the notion of the associative Yang-Baxter equation. We give a brief

introduction and some examples of solutions to this equation. Solutions

stated here and in Chapter 5 are utilised in Chapter 7, where we present

a detailed description of the computer program produced. We begin with

an overview of SINGULAR, the programming language used, we then give

a description of the ybe.lib library with some sample code, and discuss

any problems we encountered during implementation. Finally, Appendix 1

includes the code of our SINGULAR library ybe.lib.
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Chapter 1

Lie Algebras

We will begin by defining Lie algebras and giving some typical examples to

which we shall refer to throughout this thesis. We then introduce some fun-

damental concepts in Lie algebras which will be extensively used throughout

this thesis. This chapter also introduces simple and semisimple Lie alge-

bras, and the Killing form. The main source for this chapter is the book

[11], which we have mostly followed. Our main interest lies in the structure

of finite-dimensional simple and semisimple Lie algebras over the complex

field C. In order to investigate the structure of these Lie algebras we need

to understand fully the above concepts. Unless otherwise stated, all Lie

algebras in this thesis should be taken to be finite dimensional.

1.1 Introduction to Lie Algebras

Let V be an n-dimensional vector space over a field F. A bilinear form on

V is a map

(−,−) : V × V → F

such that

(λ1v1 + λ2v2, w) = λ1(v1, w) + λ2(v2, w),

(v, µ1w1 + µ2w2) = µ1(v, w1) + µ2(v, w2),

for all v, w, vi, wi ∈ V and λi, µi ∈ F .

Definition 1.1.1. Let V be an n-dimensional vector space over F . The

dual space of V , denoted V ∗ is the set of all linear maps from V to F .

1



2 CHAPTER 1. LIE ALGEBRAS

Let F be a field of characteristic zero. Throughout this thesis F will be

R or C. There are two classes of algebras over F with a bilinear product

that have particularly good properties and so are very useful: associative

algebras, where multiplication satisfies the associativity axiom (ab)c = a(bc),

and Lie algebras, which are the main focus of the next few chapters of this

thesis.

Definition 1.1.2. A Lie algebra over F is an F -vector space L, together

with a bilinear map, the Lie bracket

L× L→ L, (x, y) 7→ [x, y],

satisfying the following properties:

[x, x] = 0 for all x ∈ L, (L1)

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for all x, y, z ∈ L (L2)

Condition (L1) implies

0 = [x+ y, x+ y] = [x, x] + [x, y] + [y, x] + [y, y] = 0.

Therefore the Lie bracket is skew-symmetric, that is

[x, y] = −[y, x] for all x, y ∈ L.

Condition (L2) is called the Jacobi Identity.

Remark 1.1.3. Let A be an associative algebra with x, y ∈ A. Defining

[x, y] := x · y − y · x makes A a Lie algebra.

Let us now look at some examples of Lie algebras.

Example 1.1.4. Any vector space V has a Lie bracket defined by [x, y] =

0 for all x, y ∈ V . This is the abelian Lie algebra structure on V . In

particular, the field F may be regarded as a one-dimensional abelian Lie

algebra.

Example 1.1.5. Let V be a finite dimensional vector space over F , and

denote by End(V ) the set of all linear transformations V → V . Then End(V )

is a Lie algebra called the general linear algebra, denoted gl(V ). The bracket

operation [−,−] is defined by

[x, y] = x ◦ y − y ◦ x, for all x, y ∈ gl(V )
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where ◦ denotes the composition of maps.

If we choose a basis for V , we may represent gl(V ) with the set of n × n
matrices over F , denoted gl(n, F ). A basis for gl(n, F ) consists of the matrix

units eij for 1 ≤ i, j ≤ n. Here eij is the n × n matrix which has 1 in the

ij-th position and 0’s elsewhere. The dimension of gl(n, F ) is n2.

Remark 1.1.6. It can be shown that

[eij, ekl] = δjkeil − δilekj,

where δ is the Kronecker delta, defined by δij = 1 if i = j and δij = 0

otherwise. This formula is often used when calculating in gl(n, F ).

Example 1.1.7. Let b(n, F ) be the set of upper triangular matrices in

gl(n, F ), and let n(n, F ) be the set of strictly upper triangular matrices in

gl(n, F ). These are both Lie algebras with the same Lie bracket as gl(n, F ).

Example 1.1.8. Define sl(n, F ) = {x ∈ gl(n, F ) | tr(x) = 0}, where tr(x) =∑
xii, the sum of the diagonal elements of the matrix x. This is a Lie algebra

since for any x, y ∈ sl(n, F )

tr([x, y]) = tr(xy − yx) = tr(xy)− tr(yx) = 0,

because tr(ab) = tr(ba) for all a, b ∈ gl(n, F ).

sl(n, F ) is called the special linear algebra, and has dimension n2− 1. As a

vector space, sl(n, F ) has a basis consisting of the eij for i 6= j together with

eii − ei+1,i+1 for 1 ≤ i ≤ n− 1.

Remark 1.1.9. Sometimes the eij with i < j are called raising operators and

the eij with i > j are called lowering operators

1.2 Fundamental Concepts

In order to construct Lie algebras we must first choose a basis x1, . . . xn of

L. Then

[xi, xj] =
n∑
k=1

akijxk.

The akij are called the structure constants. The structure constants satisfy

the following equations:

akii = 0 = akij + akji,
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∑
k

(akija
m
kl + akjla

m
ki + aklia

m
kj) = 0.

This follows from the antisymmetry of the Lie bracket and the Jacobi iden-

tity (L2). We emphasise that the akij depend on the choice of basis of L:

Different bases will, in general, give different structure constants.

Definition 1.2.1. A Lie subalgebra of a Lie algebra L is a vector subspace

A ⊆ L such that

[x, y] ∈ A for all x, y ∈ A.

That is, a subspace of L which is closed under the Lie bracket.

One can easily see that Lie subalgebras are Lie algebras in their own right.

Definition 1.2.2. An ideal of a Lie algebra L is a subspace I of L such

that

[x, y] ∈ I for all x ∈ L, y ∈ I.

Example 1.2.3. sl(n, F ) is an ideal of gl(n, F ), and n(n, F ) is an ideal of

b(n, F ).

Definition 1.2.4. The centre of L is an ideal in L defined to be

Z(L) := {x ∈ L | [x, y] = 0 for all y ∈ L}.

Example 1.2.5. The centre of a gl(n, F ) consists of scalar multiples of the

identity matrix.

Definition 1.2.6. Let I be an ideal of a Lie algebra L. The centraliser of

I is defined to be

CL(I) := {x ∈ L | [x, a] = 0 for all a ∈ I}.

Proposition 1.2.7. If I and J are ideals then the product of ideals

[I, J ] := span{[x, y] |x ∈ I, y ∈ J}

is an ideal of L.

Proof. [I, J ] is by definition a subspace, so we only need to check that

[L, [I, J ]] ⊆ [I, J ]. If x ∈ I, y ∈ J , and u ∈ L, the the Jacobi identity gives

[u, [x, y]] = [x, [u, y]] + [[u, x], y].

Here [u, y] ∈ J as J is an ideal, so [x, [u, y]] ∈ [I, J ]. Similarly, [[u, x], y] ∈
[I, J ]. Therefore, their sum belongs to [I, J ]. Since [L, [I, J ]] is spanned by

elements of this form, we conclude that [L, [I, J ]] ⊆ [I, J ].
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Definition 1.2.8. If L1 and L2 are Lie algebras over a field F , a map

ϕ : L1 → L2 is a homomorphism if ϕ is a linear map and

ϕ([x, y]) = [ϕ(x), ϕ(y)] for all x, y ∈ L1.

Isomorphisms and automorphisms are defined in the usual way.

Example 1.2.9. An extremely important homomorphism is the adjoint ho-

momorphism. If L is a Lie algebra, we define

ad : L→ gl(L)

by (ad x)(y) := [x, y] for x, y ∈ L. To show that ad is a homomorphism we

can prove that ad([x, y])(z) = [ad(x), ad(y)](z):

[ad(x), ad(y)](z) = ad(x) ◦ ad(y)(z)− ad(y) ◦ ad(x)(z)

= ad(x)([y, z])− ad(y)([x, z])

= [x, [y, z]]− [y, [x, z]]

= [x, [y, z]] + [y, [z, x]]

= [[x, y], z](This is due to the Jacobi identity)

= ad([x, y])(z).

Definition 1.2.10. A derivation of a Lie algebra L is an operator D : L→
L that satisfies

D[x, y] = [Dx, y] + [x,Dy] for all x, y ∈ L.

Remark 1.2.11. Let DerA be the set of derivations of A. DerA is a Lie

subalgebra of gl(A).

Example 1.2.12. Let L be a Lie algebra and let x ∈ L. The map adx :

L→ L is a derivation of L since

(adx)[y, z] = [x, [y, z]] = [[x, y], z] + [y, [x, z]]

= [(adx)(y), z] + [y, (adx)(z)].

Remark 1.2.13. The adjoint maps are called inner derivations. All other

derivations are outer.
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1.3 Simple and Semisimple Lie algebras

This section introduces simple and semisimple Lie algebras. Every semisim-

ple Lie algebra is a sum of simple ideals, each of which can be treated as a

separate simple Lie algebra. Simple and semisimple Lie algebras are one of

the most widely studied classes of algebras as their representation theory is

very well understood and there is a classification of simple Lie algebras (see

Chapter 3). Throughout this section we will assume that L is defined over

C.

Definition 1.3.1. The derived algebra L′ of a Lie algebra L is the ideal

[L,L] generated by [a, b] for all a, b ∈ L.

Remark 1.3.2. The Lie algebra L = sl(2) of 2× 2 matrices with zero trace,

has as a basis

e =

(
0 1

0 0

)
f =

(
0 0

1 0

)
h =

(
1 0

0 −1

)
.

We can check that

[e, f ] = h, [h, e] = 2e, [h, f ] = −2f.

Therefore, [sl(2), sl(2)] = sl(2), that is, L = L′. Up to isomorphism, sl(2) is

the only 3-dimensional complex Lie algebra with this property.

The derived algebra is an important ideal of L and we can use it repeatedly

to construct the derived series of L:

L(1) = [L,L], L(r+1) = [L(r), L(r)], that is, L(r+1) = L(r)′

with L ⊇ L(1) ⊇ L(2) ⊇ . . .. As the product of ideals is an ideal, by induction

we can show that the L(r) are ideals of L (the first inclusion is due to the

Jacobi identity):

[L(r+1), L] = [[L(r), L(r)], L] ⊂ [[L(r), L], L(r)] ⊂ [L(r), L(r)] = L(r+1).

Definition 1.3.3. The Lie algebra L is said to be solvable if for some m ≥ 1

we have L(m) = 0.

We can also iterate the construction of the derived algebra in another way:

L′ = L1 = [L,L], and Lr+1 = [L,Lr] for k ≥ 2

with L ⊇ L1 ⊇ L2 ⊇ . . .. This means that Lr is generated by iterated

brackets of r + 1 elements [a1[a2[a3[. . . [ar, ar+1]]]]]. This series is called the

lower central series.
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Definition 1.3.4. The Lie algebra L is said to be nilpotent if for some

m ≥ 1 we have Lm = 0.

Theorem 1.3.5. A Lie algebra L is nilpotent if and only if for all x ∈ L
the linear map adx : L→ L is nilpotent.

Proof. For a proof see [11] Theorem 6.3.

Lemma 1.3.6. The Lie algebra b(n) is solvable.

Proof. We want to show that for L = b(n), L(t+1) = 0 for some t. We do

this by induction on t ≥ 1. For the inductive step, we assume that L(t)

is generated by Gt := {eab | a ≤ b − 2t−1}. Accordingly, we have to show

that for all eab, ecd ∈ Gt we have at least one of ±[eab, ecd] is in Gt+1 or

zero otherwise, and for all eab ∈ Gt+1 there exists eij, ekl ∈ Gt such that

[eij, ekl] = eab. To start the induction, we look at the case t = 1:

(i) Let eab, ecd ∈ L, that is, a ≤ b and c ≤ d. We find

[eab, ecd] =


ead when b = c and a 6= d,

−ecb when a = d and b 6= c,

0 otherwise.

(1.1)

It follows that a ≤ b and c ≤ d along with a 6= d and b 6= c respectively,

means that ead or −ecd are in G1. If b = c we have a ≤ b = c ≤ d

and a =6=, and so [eab, ecd] = ead with a < d. If a = d we have

c ≤ d = a ≤ b and b 6= c, and so [eab, ecd] = −ecb with c < b.

(ii) For each eab ∈ G1, [eaa, eab] = eab.

Therefore, L(1) is generated by G1 = {eab | a ≤ b − 1}. For the inductive

step we calculate Gt+1:

(i) Let eab, ecd ∈ Gt, that is, a ≤ b − 2t−1 and c ≤ d − 2t−1. Then, if

nonzero, [eab, ecd] is equal to ead or to −ecb according to Equations

(1.1). If b = c we have a+ 2t−1 ≤ b = c ≤ d− 2t−1 and so a ≤ d− 2t.

If a = d we have c + 2t−1 ≤ d = a ≤ b − 2t−1 and so c ≤ b − 2t.

Therefore, all nonzero ±[eab, ecd] are in Gt+1.

(ii) If eab ∈ Gt+1 then a ≤ b − 2k or 2k ≤ b − a, so for j = a + 2t−1 we

have [eaj, ejb] = eab.

Hence, L(k+1) is generated by Gt+1 = {eab | a ≤ b − 2k}. If eab ∈ L, then

n > b− a ≥ 0. For large t we have 2t > n hence Gt = ∅ and L(t) = 0.
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Remark 1.3.7. From Remark 1.3.2 it is clear that for sl(2), sl(2)(m) = sl(2)

for all m ≥ 1, so sl(2) is not solvable.

Definition 1.3.8. The largest solvable ideal of a Lie algebra is said to be

the radical of L and is denoted radL.

Remark 1.3.9. The last non-zero term of the derived series of the radical is

an abelian ideal of L. Therefore, the radical of L is zero if and only if L has

no non-zero abelian ideals.

Definition 1.3.10. Lie algebras possessing no non-zero abelian ideals are

called semisimple.

Remark 1.3.11. As a semisimple Lie algebra has no non-zero abelian ideals,

it cannot be solvable.

These Lie algebras and their representations will be the main focus of our

investigation into Lie algebras.

Definition 1.3.12. The Lie algebra L is simple if its only ideals are 0 and

itself and it is not abelian.

Remark 1.3.13. If L is simple, then [L,L] is a nonzero ideal in L and con-

sequently [L,L] = L. Therefore, L is not solvable.

Proposition 1.3.14. For each n ≥ 2, sl(n,C) is simple

The basis elements for sl(n,C) outlined in Example 1.1.8 are convenient

for Lie algebra calculations because the Lie bracket of any x with an eij has

few nonzero entries. This enables us to take any nonzero element of an ideal

J and manipulate it to find a nonzero multiple of each basis element in J ,

thus showing that sl(n,C) has no nontrivial ideals. The proof is as follows:

Proof. ([23] Section 6.4) Let x = (xij) be any n×n matrix, then [x, eij] has

all columns zero except the j-th, which is occupied by the i-th column of x,

and −eijx has all rows zero except the i-th, which is occupied by -(row j)

of x.
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Therefore, since [x, eij] = xeij − eijx, we have

column j of [x, eij] =



x1i

...

xi−1,i

xii − xjj
xi+1,1

...

xni


and

row i of [x, eij] =
(
−xj1 . . . −xj,j−1 xii − xjj −xj,j+1 . . . −xjn

)
and all other entries of [x, eij] are zero. In the (i, j)-position, where the

shifted row and column cross, we get the element xii − xjj.
We now use such bracketing to show that an ideal J with a nonzero member

x includes all the basis elements of sl(n,C), so J = sl(n,C).

Case (i) x has nonzero entry xji for some i 6= j. Multiply [x, eij] by eij
on the right. This destroys all columns except the ith, whose only

nonzero term is −xji in the (i, i)-position, moving it to the (i, j)-

position (because column i is moved to column j position).

Now, multiply [x, eij] by −eij on the left. This destroys all rows ex-

cept the jth, whose only nonzero element is xji at the (j, j)-position,

moving it to the (i, j)-position and changing its sign (because row j

is moved to row i position with a sign change).

It follows that [x, eij]eij−eij[x, eij] = [[x, eij], eij] contains the nonzero

element −2xji at the (i, j)-position, and zeros elsewhere. Thus the

ideal J containing x also contains eij. By further bracketing we can

show that all the basis elements of sl(n,C) are in J .

Case (ii) All the nonzero entries of x are among x11, x22, . . . , xnn.

Not all these elements are equal (otherwise tr(x) 6= 0), so we can

choose i and j such that xii−xjj 6= 0. Now, for this x, the calculations

of [x, eij] gives

[x, eij] = (xii − xjj)eij.

Thus J includes a nonzero multiple of eij, and hence eij itself. We

can now repeat the rest of the argument in Case (i) to conclude that

J = sl(n,C).
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so, sl(n,C) is simple.

Definition 1.3.15. Let V be a vector space. A non-zero vector v ∈ V

such that x(v) = λv is said to be an eigenvector of x with corresponding

eigenvalue λ. The eigenspace for eigenvalue λ is the vector subspace {v ∈
V |x(v) = λv}.

We can generalise these notions of eigenvalues and eigenvectors. Let

A be a subalgebra of gl(V ), then v ∈ V is an eigenvector for A if v is

an eigenvector for every element of A. That is, a(v) ∈ span{v} for every

a ∈ A. However, different elements of A act with different eigenvalues. We

can specify the eigenvalues of elements of A by giving a function λ : A→ F .

The corresponding eigenspace is then

Vλ := {v ∈ V | a(v) = λ(a)v for all a ∈ A}.

Lemma 1.3.16. Let L be a simple complex Lie algebra. Let ψ ∈ End(L),

then [ψ, ad(h)] = 0 for all h ∈ L if and only if ψ ∈ C · 1L.

Proof. First let us assume that ψ ∈ λ · 1L, λ ∈ C, then from Example 1.2.5

we can see that [ψ, ad(h)] = 0 for all h ∈ L.

Now, let us assume that [ψ, ad(h)] = 0 for all h ∈ L. Then as L is a

complex vector space, there exists a nonzero x0 ∈ L which is an eigenvector

of ψ, that is, ψ(x0) = λx0, λ ∈ C. Let

{0} 6= Vλ = {x ∈ L |ψ(x) = λx} ⊂ L

be the eigenspace for λ. We will now show that Vλ is an ideal in L, and

therefore equal to L (because L is simple). To show this we must prove that

ψ([x, h]) = λ([x, h]) for all x ∈ Vλ, h ∈ L. We know from the assumption

that (ψ ◦ ad(h))(x) = (ad(h) ◦ ψ)(x), that is, for all x ∈ L, ψ([h, x]) =

[h, ψ(x)]. If x ∈ Vλ then ψ(x) = λx. Therefore, ψ([h, x]) = [h, λx] = λ[h, x].

This proves that Vλ = L, therefore ψ(x) = λx for all x ∈ L, and so ψ =

λ · 1L.

Theorem 1.3.17. Let L be a simple Lie algebra. Suppose that ψ is an

automorphism of L. Then there exists a nonzero element x ∈ L such that

ψ(x) = x. That is, (ψ − 1L)(x) = 0.

Proof. See [6] Theorem 9.2.
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1.4 Representations and Modules of Lie Al-

gebras

To examine the ways in which an abstract Lie algebra can be viewed con-

cretely, we can use representations. Representations are very useful tools

for analysing the structure of Lie algebras by mapping them to matrix Lie

algebras where we can apply linear algebra techniques to study the image

and gain information about the abstract Lie algebra. In this section we aim

to introduce the notions of representations and modules of Lie algebras and

prove a very useful lemma called Schur’s Lemma.

Definition 1.4.1. Let L be a Lie algebra over a field F . A representation

of L is a Lie algebra homomorphism

ϕ : L→ gl(V )

where V is a finite-dimensional vector space over F .

For brevity, we will sometimes omit to mention the homomorphism and

just say that V is a representation of L. We can now fix a basis of V and

write the linear transformations of V provided by elements of L as matrices.

A representation is called faithful if its kernel is zero, it is called irreducible if

it has no nontrivial invariant subspaces. The dimension of a representation

is by definition the dimension of the vector space V

Example 1.4.2. From Example 1.2.9 we know that the adjoint map ad is

a homomorphism ad : L → gl(L). Therefore, ad provides a representation

of L with V = L called the adjoint representation.

The adjoint representation plays an important role in the study of Lie

algebras.

Remark 1.4.3. By the definition of the map ad, one has that Z(L) = ker(ad).

Hence, the adjoint representation of a Lie algebra L is faithful precisely when

Z(L) = 0.

Remark 1.4.4. A semisimple Lie algebra cannot have a non-trivial centre,

so the adjoint representation of a semisimple Lie algebra is faithful.
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Example 1.4.5. To compute the adjoint representation of sl(2,C) we will

use the basis given in Remark 1.3.2. Take, for example, the map adh:

adh(h) = [h, h] = 0 · h+ 0 · e+ 0 · f
adh(e) = [h, e] = 0 · h+ 2 · e+ 0 · f
adh(f) = [h, f ] = 0 · h+ 0 · e− 2 · f.

Similar calculations for ad e and ad f show that the matrix representations

of sl(2,C) are:

adh =

0 0 0

0 2 0

0 0 −2

 ad e =

 0 0 1

−2 0 0

0 0 0

 ad f =

0 −1 0

0 0 0

2 0 0

 .

Definition 1.4.6. Suppose that L is a Lie algebra over a field F . A Lie

module for L, or an L-module, is a finite-dimensional F -vector space V

together with a map

L× V → V (x, v) 7→ x · v

satisfying the conditions

(λx+ µy) · v = λ(x · v) + µ(y · v) (M1)

x · (λv + µw) = λ(x · v) + µ(x · w) (M2)

[x, y] · v = x · (y · v)− y · (x · v) (M3)

for all x, y ∈ L, v, w,∈ V , and λ, µ ∈ F .

The Lie module V is said to be irreducible, or simple, if it is non-zero

and it has no submodules other than 0 and V .

Remark 1.4.7. If L is a simple Lie algebra, then L viewed as an L-module

via the adjoint representation is irreducible.

Definition 1.4.8. If V is an L-module such that V = U ⊕W , where both

U and W are L-submodules of V , we say that V is the direct sum of the

L-modules U and W . The module V is said to be indecomposable if there

are no non-zero submodules U and W such that V = U ⊕W .

Clearly, an irreducible module is indecomposable. The converse does

not usually hold. One of the best ways to understand the structure of a

module for a Lie algebra is to look at the homomorphisms between it and

other modules.
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Lemma 1.4.9 (Schur’s Lemma). Let L be a complex Lie algebra and let

S be a finite-dimensional irreducible L-module. A map θ : S → S is an

L-module homomorphism if and only if θ is a scalar multiple of the identity

transformation; that is, θ = λ1S for some λ ∈ C.

Proof. ([11] Lemma 7.13) The“if” direction should be clear. For the “only

if” direction, suppose that θ : S → S is an L-module homomorphism. Then

θ is, in particular, a linear map of a complex vector space, and so it must

have an eigenvector v ∈ S, v 6= 0 with eigenvalue, say λ. Now θ − λ1S
is also and L-module homomorphism, with (θ − λ1S)(v) = 0. Therefore

v ∈ ker(θ−λ1S), and so it is a non-zero submodule of S. As S is irreducible

S = ker(θ − λ1S); that is, θ = λ1S.

1.5 The Root Space Decomposition of L

The Root Space Decomposition (RSD) of a semisimple Lie algebras reveals

a lot about structural infomation of the Lie algebra. The starting point

in the construction of the RSD is the identification of a certain abelian

subalgebra of L called the Cartan subalgebra. Much of the structure theory

of semisimple Lie algebras is based on the fact that every semisimple Lie

algebra over C contains a Cartan subalgebra.

Theorem 1.5.1. Let L be a complex semisimple Lie algebra. Each x ∈ L
can be written uniquely as x = d+n (the Jordan Decomposition of x) where

d, n ∈ L are such that ad d is diagonalisable, adn is nilpotent, and [d, n] = 0.

Furthermore, if y ∈ L commutes with x, then [d, y] = 0 and [n, y] = 0.

Proof. See [11] Theorem 9.15

Remark 1.5.2. If n = 0 then we say that x is a semisimple element of L.

Definition 1.5.3. A Lie subalgebra H of a Lie algebra L is called a Cartan

subalgebra if H is abelian and every element h ∈ H is semisimple.

Proposition 1.5.4. Let L be a complex semisimple Lie algebra. Then L

has a non-zero Cartan subalgebra.

Proof. We first need to show that L must contain semisimple elements.

If x ∈ L has Jordan decomposition x = d + n, then by Theorem 1.5.1,

d, n ∈ L. If d, the semisimple part, were always zero, then by Theorem

1.3.5, L would be nilpotent and therefore solvable. Hence, we can find

a non-zero semisimple element d ∈ L. We can obtain a non-zero Cartan
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subalgebra of L by taking any subalgebra which contains d and which is

maximal subject to being abelian and consisting of semisimple elements.

This subalgebra must exist because L is finite-dimensional.

Lemma 1.5.5. If H is a Cartan subalgebra of a complex semisimple Lie

algebra L, then H = CL(H).

Proof. For a proof see Section 10.2 of [11]

Cartan subalgebras are our main tool in uncovering the structure and

the classification of semisimple Lie algebras. Suppose that L is a complex

semisimple Lie algebra containing an abelian subalgebra H consisting of

semisimple elements. Then L has a basis of common eigenvectors for the

elements of adH. Given a common eigenvector x ∈ L, the eigenvalues are

given by the associated weight, α : H → C, defined by

(adh)x = α(h)x for all h ∈ H.

Weights are elements of the dual space H∗. For each α ∈ H∗, let

Lα := {x ∈ L | [h, x] = α(h)x for all h ∈ H}

denote the corresponding weight space. One of these weight spaces is the

zero weight space:

L0 = {z ∈ L | [h, z] = 0 for all h ∈ H}.

This is the same as the centraliser of H in L (Definition 1.2.6). From Lemma

1.5.5 we have H = CL(H), so the direct sum decomposition of L into weight

spaces for H may be written as

L = H ⊕
⊕
α∈Φ

Lα (1.2)

where Φ is the set of α ∈ H∗ such that α 6= 0 and Lα 6= 0. Since L is

finite-dimensional, Φ is finite. The elements of Φ are called the roots of L

with respect to h, and the Lα are called the root spaces. The direct sum

decomposition above, Equation (1.2), is the root space decomposition.

Example 1.5.6. Consider sl(3,C). We will work with the following basis:
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x1 =

0 1 0

0 0 0

0 0 0

 y1 =

0 0 0

1 0 0

0 0 0

 h1 =

1 0 0

0 −1 0

0 0 0


x2 =

0 0 0

0 0 1

0 0 0

 y2 =

0 0 0

0 0 0

0 1 0

 h2 =

0 0 0

0 1 0

0 0 −1


x3 =

0 0 1

0 0 0

0 0 0

 y3 =

0 0 0

0 0 0

1 0 0

 .

The subspace span{x1, y1, h1} is a subalgebra of sl(3,C) isomorphic to

sl(2,C) (this can be seen if you ignore the 3rd row and 3rd column). Simi-

larly,

span{x2, y2, h2} is a subalgebra of sl(3,C) isomorphic to sl(2,C). Thus, us-

ing the results of Remark 1.3.2 we have the following commutator relations:
[h1, x1] = 2x1 [h2, x2] = 2x2

[h1, y1] = −2y1 [h2, y2] = −2y2

[x1, y1] = h1 [x2, y2] = h2.
For sl(3,C) we know that the Cartan subalgebra consists of elements h1

and h2. Therefore, we can construct the matrix adh for h = ah1 + bh2 as

follows:

ad(ah1 + bh2)x1 = [ah1 + bh2, x1] = (2a− b)x1

ad(ah1 + bh2)y1 = (−2a+ b)y1

ad(ah1 + bh2)h1 = 0h1

ad(ah1 + bh2)x2 = (−a+ 2b)x2

ad(ah1 + bh2)y2 = (a− 2b)y2

ad(ah1 + bh2)h2 = 0h2

ad(ah1 + bh2)x3 = (a+ b)x3

ad(ah1 + bh2)y3 = (−a− b)y3.

The matrix looks like

adh =



2a− b 0 0 0 0 0 0 0

0 −2a+ b 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 −a+ 2b 0 0 0 0

0 0 0 0 a− 2b 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 a+ b 0

0 0 0 0 0 0 0 −a− b


.
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1.6 The Killing Form

In order to analyse roots and root spaces in more detail, we need to define a

Euclidean inner product on the root spaces. This is provided by the Killing

form on L. The Killing form of a Lie algebra is the trace form corresponding

to the adjoint representation. The requirement that the Killing form be

nondegenerate poses strong restrictions on the structure of L. In particular,

we will show that this is true if and only if L is semisimple. We also show

that all derivations of L must be of the form adx for some x ∈ L, and

we will look at a linear map ϕ which is induced by a symmetric, bilinear,

associative form β. Throughout this section, unless otherwise stated, L is

a semisimple Lie algebra over C.

Remark 1.6.1. Let x, y, z ∈ gl(V ) and let V be finite dimensional. Then

tr([x, y]z) = tr(xyz − yxz) = tr(xyz − xzy) = tr(x[y, z]).

Recall that the adjoint representation associates to an element x ∈ L a

linear transformation ad(x) : L→ L.

Definition 1.6.2. The Killing form on L is the symmetric bilinear form

defined by

κ(x, y) := tr(ad x ◦ ad y) for all x, y,∈ L,

that is, the trace of the composition of linear transformations ad(x) and

ad(y), sending a ∈ L to [x, [y, a]].

The Killing form is bilinear because ad is linear, the composition of maps

is bilinear, and tr is linear. It is symmetric because tr(ab) = tr(ba) for linear

maps a and b. Another very important property of the Killing form is its

associativity, which states that for all x, y, z ∈ L, we have

κ([x, y], z) = κ(x, [y, z]).

This follows from the identity for trace mentioned above. Equivalently,

−κ([y, x], z) = κ(x, [y, z]).

much of the usefulness of κ is due to this identity. We shall see that the

properties of the Killing form of a Lie algebra L say a lot about L.

Lemma 1.6.3. Let I be an ideal in L. If x, y ∈ I, then κI(x, y) = κ(x, y)

Proof. See [11] Lemma 9.8
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Definition 1.6.4. Define the kernel of a symmetric bilinear form β on a

finite-dimensional complex vector space V to be

ker β := {v ∈ V | β(v, w) = 0, for all w ∈ V }

This is a vector subspace of V . A symmentric bilinear form is called nonde-

generate if its kernel is zero, that is, if there is no non-zero vector v ∈ V such

that β(v, x) = 0 for all x ∈ V . We also define the orthogonal complement

of a subspace A relative to β to be

A⊥ := {v ∈ V | β(v, w) = 0, for all w ∈ A}.

Remark 1.6.5. If I is an ideal of L and β = κ is the Killing form, then, due

to the associativity of κ, I⊥ is also an ideal. This implies that L⊥ is an ideal

of L.

Example 1.6.6. As an example of the Killing form, consider again sl(3,C).

Using the results from Example 1.5.6, the corresponding table of commuta-

tors reads, where for example, [x2, x1] = −x3:

x1 x2 x3 y1 y2 y3 h1 h2

x1 0 −x3 0 −h1 0 y2 2x1 −x1

x2 0 0 0 −h2 −y1 −x2 2x2

x3 0 x2 −x1 −(h1 + h2) x3 x3

y1 0 y3 0 −2y1 y1

y2 0 0 y2 −2y2

y3 0 −y3 −y3

h1 0 0

h2 0

From this table we can easily calculate the matrix for each basis element

under the adjoint representation. Taking the Killing form between two of

our basis elements, only a few are non-zero:

κ(x1, y1) = 6, κ(x2, y2) = 6, κ(x3, y3) = 6

κ(h1, h2) = −6, κ(h1, h1) = 12, κ(h2, h2) = 12.
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Therefore, the Killing form of sl(3,C) is:

κ = 6 ·



0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 2 0 0 −1 0 0

0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0

0 0 −1 0 0 2 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0


.

Definition 1.6.7. Let L be a Lie algebra. Let ψ : L → L be a homomor-

phism. We will denote the “adjoint” of ψ to be the linear map ψ∗ which

satisfies κ(ψ(x), y) = κ(x, ψ∗(y)).

Remark 1.6.8. The adjoint map ψ∗ is unique as κ is nondegenerate.

We can use the Killing form and the definition of “adjoint” above to

prove the following Lemma which will prove useful in later chapters:

Lemma 1.6.9. Let L be a simple Lie algebra. Let ψ be an endomorphism

of L as a Lie algebra. Then detψ ∈ {0, 1,−1}.

Proof. Suppose that ψ 6= 0. As ψ : L→ L is an endomorphism, then kerψ

is an ideal in L different from L. But L is simple, therefore, kerψ = 0 and

so ψ is an automorphism. As ψ is an endomorphism, we know,

ψ([x, y]) = [ψ(x), ψ(y)],

which can be written as,

(ψ ◦ ad(x))(y) = (ad(ψ(x)) ◦ ψ)(y)

therefore,

ψ ◦ ad(x) = ad(ψ(x)) ◦ ψ
ψ ◦ ad(x) ◦ ad(y) = ad(ψ(x)) ◦ ψ ◦ ad(y)

= ad(ψ(x)) ◦ ad(ψ(y)) ◦ ψ

and so, ψ ◦ad(x)◦ad(y)◦ψ−1 = ad(ψ(x))◦ad(ψ(y)). We want to show that

ψ preserves the Killing form κ. We know that κ(x, y) := tr(ad(x) ◦ ad(y))

and from tr(ABA−1) = tr(B), we have

tr(ψ ◦ ad(x) ◦ ad(y) ◦ ψ−1) = tr(ad(x) ◦ ad(y)) = tr(ad(ψ(x)) ◦ ad(ψ(y)))
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Hence, we can write

κ(x, y) = κ(ψ(x), ψ(y)) (1.3)

that is, ψ preserves the Killing form. Now if we let y = ψ−1(ȳ) in Equation

(1.3) we obtain

κ(x, ψ−1(ȳ)) = κ(ψ(x), ȳ).

That is, ψ−1 = ψ∗ the adjoint map. We know that ψ ◦ ψ−1 = 1L = ψ ◦ ψ∗.
Then 1 = det(ψ) det(ψ∗) = (det(ψ))2. Therefore, detψ = ±1.

Cartan’s criterion for semisimplicity yield a straightforward way of check-

ing whether a given Lie algebra is semisimple.

Theorem 1.6.10 (Cartan’s First Criterion). The complex Lie algebra L is

solvable if and only if κ(x, y) = 0 for all x ∈ L and y ∈ L′.

Proof. See [21] Section 1.9

Cartan’s first criterion characterises solvable Lie algebras as those for which

the derived Lie algebra L′ is contained in the kernel of the Killing form

of L. The opposite case are the algebras for which the Killing form is

nondegenerate.

The following remark proves useful in proving Cartan’s second criterion:

Remark 1.6.11. Let V be a finite-dimensional complex vector space and let

x : V → V be a linear map. Theorem 6.1 in [11] states that we can always

find a basis of V in which x is represented by an upper triangular matrix.

This implies that a nilpotent map may be represented by a strictly upper

triangular matrix and so has trace zero.

Theorem 1.6.12 (Cartan’s Second Criterion). A Lie algebra L is semisim-

ple if and only if its Killing form is nondegenerate.

Proof. ([11] Theorem 9.9) If L is not semisimple, then it has a non-zero

abelian ideal A. We must show that A is in the kernel of the Killing form.

If x ∈ L, a ∈ A we have that adx is a linear map that preserves A, and ad a

is a linear map which maps L into A and maps A to 0. Hence, the composite

map adx ◦ ad a maps L into A and is 0 on A, so (adx ad a)2 = 0. We know

from Remark 1.6.11 that nilpotent maps have trace 0 and so κ(x, a) = 0,

that is A is in the kernel of the Killing form. Conversely, let A be the kernel

of the Killing form. A is an ideal because

κ([x, a], y) = −κ([a, x], y) = −κ(a, [x, y]) = 0, a ∈ A, x, y ∈ L.
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Next we consider the elements of adA. They form a Lie subalgebra with

κ(a, b) = 0 for all a, b ∈ adA. Therefore by Cartan’s first criterion, Theorem

1.6.10, adA is solvable. The kernel of the adjoint representation is the centre

of L (see Remark 1.4.3) so if adA is solvable , then so is A. We have found

a nonzero solvable ideal.

We will now use Theorem 1.6.12 to show that the only derivations of a

complex semisimple Lie algebra are those of the form adx for x ∈ L. More

precisely, we have

Proposition 1.6.13. If L is a finite-dimensional complex semisimple Lie

algebra, then adL = DerL.

Proof. ([11] Proposition 9.13) We showed in Example 1.2.12 that for each

x ∈ L the linear map adx is a derivation of L, so ad is a Lie algebra

homomorphism from L to DerL. Moreover, if δ is a derivation of L and

x, y ∈ L, then

[δ, adx]y = (δ ◦ adx)(y)− (adx ◦ δ)(y)

= δ[x, y]− adx(δy)

= [δx, y] + [x, δy]− [x, δy]

= ad(δx)y.

Thus the image of ad : L → DerL is an ideal of DerL. This much is true

for any Lie algebra.

Now we bring in our assumption that L is complex and semisimple.

First, note that ad : L→ DerL is one-to-one, as ker ad = Z(L) = 0, so the

Lie algebra M := adL is isomorphic to L and therefore it is semisimple as

well. To show that M = DerL, we use the Killing form on the Lie algebra

DerL. If M is properly contained in DerL then M⊥ 6= 0, so it is sufficient

to prove that M⊥ = 0. As M is an ideal of DerL, the Killing form κM
of M is the restriction of the Killing form on DerL by Lemma 1.6.3. As

M is semisimple, by Cartan’s Second Criterion, κM is nondegenerate, so

M⊥ ∩M = 0 and hence [M⊥,M ] = 0. But we saw above that

[δ, adx] = ad(δx) (1.4)

so, for all x ∈ L, we have δ(x) = 0 for δ ∈M⊥. In other words, δ = 0.

The following Lemma on derivations will prove useful in later chapters:
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Lemma 1.6.14. Let A be a linear operator in L. Let B be a bilinear form

B : L ⊗ L → C such that B(x, y) = κ(Ax, y). Then A is a derivation and

A∗ + A = 0 if and only if B is skew-symmetric and satisfies the following

equation:

B([x, y], z) +B([y, z], x) +B([z, x], y) = 0. (1.5)

Proof. First we prove that B is skew-symmetric if and only if A∗ + A = 0.

B is skew-symmetric if and only if B(x, y) +B(y, x) = 0 we find

B(x, y) +B(y, x) = κ(Ax, y) + κ(Ay, x)

= κ(Ax, y) + κ(y, A∗x)

= κ((A+ A∗)x, y).

This is equal to zero if and only if A + A∗ = 0. We know from Definition

1.2.10 that A is a derivation if and only if

A[x, y]− [Ax, y]− [x,Ay] = 0 for all x, y ∈ L.

Because κ is nondegenerate, this is true if and only if

κ(A[x, y], z)− κ(Ax, [y, z])− κ([x,Ay], z) = 0 for all x, y, z ∈ L

because κ is associative, this is true if and only if

κ(A[x, y], z)− κ(Ax, [y, z]) + κ(Ay, [x, z]) = 0.

Using the definition of B we find that the above is equivalent to

B([x, y], z)−B(x, [y, z]) +B(y, [x, z]) = 0

and because B is skew-symmetric, this is equal to Equation (1.5).

Remark 1.6.15. Let β be a symmetric nondegenerate bilinear form on a

vector space V , and let {v1, . . . , vn} be a basis for V . Then the dual basis

of V relative to β is defined to be {w1, . . . , wn} satisfying β(vi, wj) = δij.

Proposition 1.6.16. Let L be a Lie algebra over C, and let β be a sym-

metric, associative, bilinear form on L. Then β induces a linear map

ϕ : L→ L∗, ϕ(x) = β(x,−).
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Proof. We must show that ϕ(x+ y) = ϕ(x) +ϕ(y) and that ϕ(λx) = λϕ(x)

for all x, y ∈ L, λ ∈ C. From the bilinearity of β we find,

ϕ(x+ y) = β(x+ y,−) = β(x,−) + β(y,−) = ϕ(x) + ϕ(y)

also, from bilinearity

ϕ(λx) = β(λx,−) = λβ(x,−) = λϕ(x).

Thus, ϕ is a linear map.

Lemma 1.6.17. Let L be a Lie algebra over C and let β be defined as in

Proposition 1.6.16. If β is nondegenerate, then the map ϕ is an isomorphism

of vector spaces between L and L∗ and is also an isomorphism of L-modules

Proof. Is is clear that ϕ is an isomorphism between the vector spaces of L

and L∗ because β is nondegenerate. The dual space L∗ is an L-module by

defining (x · ξ)(v) = −ξ(x · v) for ξ ∈ L∗, x, v ∈ L. Therefore, we need to

show that

ϕ(x · v)(y) = x · ϕ(v)(y) = −ϕ(v)(x · y).

We may write this as ϕ([x, v])(y) = β([x, v], y) = −β([v, x], y). From the

associativity of β this is equal to −β(v, [x, y]) = −ϕ(v)([x, y]) as required.

Proposition 1.6.18. Let L be a simple Lie algebra over C with Killing

form κ. A symmetric, associative, nondegenerate, bilinear form on L is

uniquely determined up to scalar. In particular, it is a scalar multiple of κ.

Proof. Let β be any other symmetric associative nondegenerate bilinear

form on L. From Lemma 1.6.17 we know that β and κ induce isomor-

phisms of L-modules ϕβ : L → L∗ and ϕκ : L → L∗. By composing these

isomorphisms as follows:

ϕ−1
β ◦ ϕκ : L→ L

we obtain an isomorphism from L to L. Because L is simple, L viewed as

an L-module via the adjoint representation is simple (that is, irreducible).

Therefore, by Schur’s Lemma, Lemma 1.4.9, ϕ : L → L is an L-module

homomorphism if and only if ϕ is a scalar multiple of the identity, that is,

ϕ = λ1L for some λ ∈ C. Therefore, for some λ ∈ C we have

ϕ−1
β ◦ ϕκ = λ1L = λϕ−1

β ◦ ϕβ.
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We can apply ϕβ to each side to obtain ϕκ = λϕβ Using the definitions of

the maps ϕβ and ϕκ we find that

κ(x, y) = ϕκ(x)(y) = λϕβ(x)(y) = λβ(x, y).

1.7 Roots of a Semisimple Lie algebra

In this section we carry out an investigation into the roots of a semisimple

Lie algebra L. The roots of a semisimple Lie algebra are the Lie algebra

weights α ∈ H∗ occurring in its adjoint map. The set of roots form the root

system and are completely determined by L. Here we focus on the main

properties of the roots and among other things we prove that if α ∈ Φ is a

root then −α is also a root.

Lemma 1.7.1. Suppose that α, β ∈ H∗. Then

(i) [Lα, Lβ] ⊆ Lα+β,

(ii) If α+β 6= 0, then κ(Lα, Lβ) = 0, that is, Lα is orthogonal to Lβ relative

to the Killing form of L,

(iii) The restriction of κ to H is nondegenerate.

Proof. ([11] Lemma 10.1)

(i) Take x ∈ Lα and y ∈ Lβ. We must show that [x, y], if nonzero, is an

eigenvector for each adh ∈ H, with eigenvalue α(h) +β(h). Using the

Jacobi identity we get

[h, [x, y]] = [[h, x], y] + [x, [h, y]] = [α(h)x, y] + [x, β(h)y]

= α(h)[x, y] + β(h)[x, y]

= (α + β)(h)[x, y].

(ii) Let h ∈ H be such that (α + β)(h) 6= 0. Then for x ∈ Lα and y ∈ Lβ,

we have, using the associativity of the Killing form

α(h)κ(x, y) = κ([h, x], y) = −κ([x, h], y)

= −κ(x, [h, y]) = −β(h)κ(x, y)
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and hence,

α(h)κ(x, y) + β(h)κ(x, y) = 0

(α + β)(h)κ(x, y) = 0.

Since by assumption (α + β)(h) 6= 0, we must have κ(x, y) = 0.

(iii) Suppose that z ∈ H and κ(z, x) = 0 for all x ∈ H. By (ii), we know

that H is perpendicular to Lα for all α 6= 0. If x ∈ L, then by the

RSD, Equation (1.2), we can write x as

x = x0 +
∑
α∈φ

xα

with xα ∈ Lα. By linearity, κ(z, x) = 0 for all x ∈ L. Since κ is

nondegenerate, it follows that z = 0, as required.

Remark 1.7.2. The Killing form enables us to make a connection between

the Cartan subalgebra H and its dual H∗. Given h ∈ H, let θh denote the

map θh ∈ H∗ defined by

θh(k) = κ(h, k) for all k ∈ H.

Recall from Lemma 1.6.17 that this map is an isomorphism. In particular,

to each α ∈ H∗ we associate its root vector tα ∈ H defined as an element

of H such that

α(h) = κ(tα, h) for any h ∈ H. (1.6)

The root vector tα exists and is unique by the nondegeneracy of the re-

striction of the Killing form to H (Lemma 1.7.1). This unique connection

between H and H∗ occurs not for all Lie algebras but only for the class

of semisimple Lie algebras. (Recall that for semisimple Lie algebras the

Killing form is nondegenerate. This means, in particular, that if κ(a, b) = 0

for every b ∈ H, then a = 0).

Example 1.7.3. This relationship between H and H∗ can be illustrated

using sl(3). Referring to equations in Example 1.5.6, we designate three

non-zero roots by

α1(ah1 + bh2) = 2a− b
α2(ah1 + bh2) = −a+ 2b

α3(ah1 + bh2) = a+ b. (1.7)
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The other non-zero roots are the negative of these. Now we determine the

elements in H corresponding to α1, α2 and α3. Each of these h’s is to lie in

H and is thus of the form

hαi = cih1 + dih2

Using the previously computed values of the Killing form, we see that

κ(hαi , h1) = 12ci − 6di

κ(hαi , h2) = −6ci + 12di.

To determine the coefficients ci and di, we combine the definition of tα1 in

Equation (1.6) with the expression for the roots in Equations (1.7)

α1(h1) = 2 = κ(tα1 , h1) = 12c1 − 6d1

α1(h2) = −1 = κ(tα1 , h2) = −6c1 + 12d1

α2(h1) = −1 = κ(tα2 , h1) = 12c2 − 6d2

α2(h2) = 2 = κ(tα2 , h2) = −6c2 + 12d2

α3(h1) = 1 = κ(tα3 , h1) = 12c3 − 6d3

α3(h2) = 1 = κ(tα3 , h2) = −6c3 + 12d3.

Thus we find the elements of H which correspond to the various roots:

tα1 =
1

6
h1; tα2 =

1

6
h2; tα3 =

1

6
(h1 + h2).

Proposition 1.7.4. Let x, y : V → V be linear maps from a complex vector

space V to itself. Suppose that x and y both commute with [x, y]. Then [x, y]

is a nilpotent map.

Proof. See [11] Proposition 5.7.

Proposition 1.7.5. Let α ∈ Φ. The root spaces L±α are 1-dimensional.

Moreover, the only multiples of α which lie in Φ are ±α.

Proof. See [11] Proposition 10.9.

Lemma 1.7.6. Suppose that α ∈ Φ and that x is a nonzero element in Lα.

Then −α is a root and there exists y ∈ L−α such that span{x, y, [x, y]} is a

Lie subalgebra of L isomorphic to sl(2,C).
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Proof. ([11] Lemma 10.5) First we claim that there is some y ∈ L−α such

that κ(x, y) 6= 0 and [x, y] 6= 0. Since κ is nondegenerate, there is some

w ∈ L such that κ(x,w) 6= 0. Write w = y0 +
∑

β∈Φ yβ with y0 ∈ L0 and

yβ ∈ Lβ. When we expand κ(x,w), we find by Lemma 1.7.1 part (ii) the

only way a non-zero term can occur is if −α is a root and y−α 6= 0, so we

may take y = y−α. Now α is nonzero so there is some t ∈ H such that

α(t) 6= 0. For this t, we have

κ(t, [x, y]) = κ([t, x], y) = α(t)κ(x, y) 6= 0

and so [x, y] 6= 0. Let S := span{x, y, [x, y]}. By Lemma 1.7.1 (i), [x, y] lies

in L0 = H. As x and y are simultaneous eigenvectors for all elements of

adH, and so in particular for ad[x, y] this shows that S is a Lie subalgebra

of L. It remains to show that S is isomorphic to sl(2,C).

Let h := [x, y] ∈ S. We claim that α(h) 6= 0. If not, then [h, x] =

α(h)x = 0; similarly, [h, y] = −α(h)y = 0, so adh : L → L commutes with

adx : L → L and ad y : L → L. From Proposition 1.7.4 we know that this

means that adh : L → L is a nilpotent map. However, as H is a Cartan

subalgebra, h is semisimple. The only element of L that is both semisimple

and nilpotent is 0, so h = 0, a contradiction.

Thus S is a 3-dimensional complex Lie algebra with S ′ = S. From

Remark 1.3.2, S is isomorphic to sl(2,C).

Remark 1.7.7. We can now associate to each root α ∈ Φ a Lie subalgebra

of L isomorphic to sl(2,C) so that we can apply our results from represen-

tations of sl(2,C) to deduce several strong results on the structure of L. A

standard basis for this Lie algebra is {eα, fα, hα} such that:

1. eα ∈ Lα, fα ∈ L−α, hα ∈ H and α(hα) = 2.

2. The map θ : sl(α)→ sl(2,C) defined by θ(eα) = e, θ(fα) = f, θ(hα) =

h is a Lie algebra isomorphism.

Lemma 1.7.8. Let α ∈ Φ. If x ∈ Lα and y ∈ L−α, then [x, y] = κ(x, y)tα.

In particular, hα = [eα, fα] ∈ span{tα}.

Proof. ([11] Lemma 10.6) For h ∈ H, we have

κ(h, [x, y]) = κ([h, x], y) = α(h)κ(x, y) = κ(tα, h)κ(x, y).

We can look at κ(x, y) as a scalar and rewrite the last equality of the above

equation as

κ(h, [x, y]) = κ(h, κ(x, y)tα).
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This shows that [x, y]− κ(x, y)tα is perpendicular to all h ∈ H, and hence

it is zero as κ restricted to H is nondegenerate.

Example 1.7.9. Consider sl(n,C). Recall that (adh)eij = (εi − εj)(h)eij.

We let αij = εi − εj so

(adh)eij = αij(h)eij

and the root space decomposition is

sl(n,C) = H ⊕
⊕
i 6=j

C · eij

using eijekl = δjkeil one verifies that [eij, eji] = eii − ejj and that

eij 7→ x, eji 7→ y, eii − ejj 7→ h

defines an isomorphism of Sij := Sαij with sl(2,C).





Chapter 2

Cartan Matrices and Dynkin

Diagrams

In this chapter, we continue our investigation into the roots of a semisimple

Lie algebra. We use the Killing form to define an inner product on the

Euclidean space E. We then can define a root system R ⊂ E and a base

for a root system B ⊂ R. This leads us into Cartan matrices and Dynkin

diagrams, of which we give explicitly for the classical Lie algebras. Finally,

we look at the universal enveloping algebra and the Casimir operator for

Lie algebras. We note that this material is not new, and we have mostly

followed the book [11].

2.1 Cartan Subalgebras as Inner Product Spaces

In this section we show that the roots of L all lie in a real vector subspace

of H∗ and that the Killing form induces an inner product on the space.

Proposition 1.7.5 shows that if α ∈ φ then the only multiples of α ∈ φ are

±α. On the other hand, there must be roots, as otherwise the root space

decomposition Equation (1.2) would imply that L = H was abelian.

Lemma 2.1.1. For each α ∈ Φ we have

1. tα = hα
κ(eα,fα)

,

2. hα = 2tα
κ(tα,tα)

,

3. κ(tα, tα)κ(hα, hα) = 4.

29
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Proof. For (1) we use Lemma 1.7.8 applied with x = eα, y = fα, then

[eα, fα] = hα = κ(eα, fα)tα.

From Remark 1.7.7 we can show (2): we know that α(hα) = 2 and from (1)

hα = κ(eα, fα)tα and so we have

2 = κ(tα, hα) = κ(tα, κ(eα, fα)tα)

which implies that κ(eα, fα)κ(tα, tα) = 2. But from (1) κ(eα, fα) = hα
tα

so

we have

hα =
2tα

κ(tα, tα)
.

Finally we prove (3) directly,

κ(hα, hα) = κ

(
2tα

κ(tα, tα)
,

2tα
κ(tα, tα)

)
=

4κ(tα, tα)

κ(tα, tα)κ(tα, tα)
=

4

κ(tα, tα)
.

Definition 2.1.2. Denote by E the real subspace of H∗ spanned by the

roots α1, . . . , αl and containing all the roots of φ. E does not depend on

our particular choice of basis.

Recall again from Lemma 1.6.17 that the Killing form defines an iso-

morphism H ∼= H∗ sending x to the linear form κ(x,−) and under this

isomorphism tα ∈ H corresponds to α ∈ H∗. Let us write (−,−) for the

positive definite symmetric bilinear form on H∗ which corresponds to the

Killing form under this isomorphism. Then we have

(α, β) = κ(tα, tβ) ∈ Q.

Hence, for β ∈ Φ we have

β(hα) = κ(tβ, hα)

=
2κ(hβ, tα)

κ(eβ, fβ)κ(tα, tα)

=
2κ(

2tβ
κ(tβ ,tβ)

, tα)κ(tβ, tβ)

κ(tα, tα)
(2.1)

=
2κ(tβ, tα)

κ(tα, tα)

=
2(β, α)

(α, α)
.
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This form (−,−) is a real-valued inner product on E. We will write

〈β, α〉 :=
2(β, α)

(α, α)
, (2.2)

note that this is only linear in respect to its first variable, β.

The essential properties of the roots of complex semisimple Lie algebras

may be captured in the idea of an abstract “root system”. These root

systems can be used to classify the complex semisimple Lie algebras.

Definition 2.1.3. A subset R of a real inner-product space E is a root

system if it satisfies the following axioms

(R1) R is finite, it spans E, and it does not contain zero.

(R2) If α ∈ R, then the only scalar multiples of α in R are ±α.

(R3) If α ∈ R, then the reflection sα in the hyperplane orthogonal to α

sends R into itself.

(R4) If α, β ∈ R, then 〈β, α〉 ∈ Z

The elements of R are called roots.

In [11] Section 11.2 it was shown that for any two nonzero vectors α and

β in E, the permissable angles between them are quite restrictive. This,

in turn, limits the possibilities for simple Lie algebras. The importance of

the concept of a root system is due to the fact that the isomorphism classes

of complex semisimple Lie algebras bijectively correspond to equivalence

classes of root systems. Moreover, for a given complex semisimple Lie alge-

bra the various choices of a Cartan subalgebra give rise to equivalent root

systems.

Definition 2.1.4. A root system R is irreducible if R cannot be partitioned

into two disjoint subsets R = R1 ∪ R2 such that every element of R1 is

orthogonal to every element of R2.

Definition 2.1.5. Let R be a root system in the real inner-product space

E. A subset B of R is a base for the root system R if

(B1) B is a vector space basis for E, and

(B2) every β ∈ R can be written as β =
∑

α∈B kαα with kα ∈ Z, where all

the nonzero coefficients kα have the same sign.
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We also define positive roots to be those roots where all the coefficients kα
are positive, and negative roots to be those roots where all the coefficients

kα are negative.

Theorem 2.1.6. Every root system has a base.

Proof. See [11] Theorem 11.10

Let R+ denote the set of all positive roots in a root system R with

respect to a base B, and let R− be the set of all negative roots. Then

R = R+ ∪R−, a disjoint union. The set B is contained in R+; the elements

of B are called simple roots. A simple root is a positive root which cannot

be written as the sum of two positive roots.

Example 2.1.7. Consider sl(3). The roots are

α1(ah1 + bh2) = 2a− b
α2(ah1 + bh2) = −a+ 2b

α3(ah1 + bh2) = a+ b

and the negative of these roots.

Suppose we select as a basis for H∗ the roots α1 and α3, in that order. Now

since α2 = α3 − α1, α2 is negative. The positive roots are α1, −α2, and α3.

Now α1 = α3 + (−α2) so α1 is the sum of two positive roots, therefore is

not simple. The simple roots are −α2 and α3, and α2 > α3. This depends

on the original ordering of the basis.

2.2 Cartan Matrices and Dynkin Diagrams

In this section we describe a generalised Cartan matrix. The Cartan matrix

of a simple Lie algebra is constructed using the simple roots of the Lie alge-

bra. Conversely, given a Cartan matrix, one can recover its corresponding

Lie algebra. We also describe a certain graph, called a Dynkin diagram, as-

sociated to each Lie algebra which gives the same information as the Cartan

matrix.
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Definition 2.2.1. Let B be a base in a root system R. Fix an order on the

elements of B, say (α1, . . . , αl). The matrix

(cij) = 〈αi, αj〉 =

(
2(αi, αj)

(αj, αj)

)
1≤i,j≤n

=


2 (α1,α1)
|α1|2 2 (α1,α2)

|α2|2 2 (α1,α3)
|α3|2 · · ·

2 (α2,α1)
|α1|2 2 (α2,α2)

|α2|2 · · · · · ·
...

...
...

...
...

...
...

...


is called the Cartan matrix of R.

We form the Cartan matrix from the simple roots. The Cartan matrix

summarizes all the properties of the simple Lie algebra to which it corre-

sponds and depends only on the ordering adopted with our chosen base B

and not on the base itself. The dimension of the Cartan subalgebra H is

the same as that of H∗, the root space. This dimension is called the rank

of the algebra.

The diagonal entries of the Cartan matrix are always 2. Since the scalar

product of two different simple roots is non-positive, the off-diagonal ele-

ments can only be 0,−1,−2, or −3, since the angles between the simple

roots are right or obtuse (see [11] Section 11.2).

Example 2.2.2. For rank R = 2, C =

(
2 −a
−b 2

)
where either a = b = 0

or both a and b are non-negative integers.

Since det C = 4 − ab > 0, the Cartan matrices for root systems of rank 2

are:

A1 × A1 :

(
2 0

0 2

)
; A2 :

(
2 −1

−1 2

)
; B2 :

(
2 −2

−1 2

)
; G2 :

(
2 −1

−3 2

)
.

Example 2.2.3. Consider again sl(3). For simplicity take the positive basis

to be α1 and α2. Then since α3 = α1 + α2 the simple roots are also α1 and

α2. The relevant scalar products are

(α1, α1) =
1

3

(α1, α2) = −1

6

(α2, α2) =
1

3
.

From this we compute the Cartan matrix(
2 −1

−1 2

)
.
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Any root system gives rise to a Cartan matrix. So even before studying

each of the simple algebras in detail, we know in advance that they exist,

provided that we know that the corresponding root systems exist. We can

also describe the Cartan matrix of a given root system R by a certain graph.

Definition 2.2.4. The Dynkin diagram of a semisimple Lie algebra is a

graph whose vertices correspond to the simple roots α. The number of

edges joining the vertices αi and αj is cijcji. In addition, if αi and αj have

different lengths, these edges are marked with an arrow directed towards

the shorter root.

Remark 2.2.5. Simple Lie algebras correspond to connected Dynkin dia-

grams and any finite-dimensional simple Lie algebra yields one of a very

restricted set of Dynkin diagrams (and hence Cartan matrices).

Example 2.2.6. Consider the Dynkin diagram:

�������� �������� �������� ��������>

α1 α2 α3

The way to read this diagram is as follows: each node in the diagram stands

for a simple root α1, α2, α3. It is clear how to discover the Cartan integers

cij from the Dynkin diagram. The Cartan matrix of the above diagram is

determined by noting that c13 = c31 = 0 since the first and third dots are

not connected. Since one line connects the first and second points, we must

have c12 = c21 = −1. The second and third points are connected by two lines

so c23c32 = 2, Since the third root is smaller that the second, it must be that

c23 = −2 while c32 = −1. Thus we have 2 −1 0

−1 2 −2

0 −1 2

 .

The definition of a semisimple Lie algebra does not seem very restrictive,

so the fact that the complex semisimple Lie algebras are determined, up

to isomorphism, by their Dynkin diagrams is quite remarkable. However,

complex semisimple Lie algebras with different Dynkin diagrams are not

isomorphic.

Proposition 2.2.7. Let L be a complex semisimple Lie algebra with Cartan

subalgebra H and root system φ. If φ is irreducible, then L is simple.
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Proof. ([11] Proposition 12.4) By the root space decomposition, we may

write L as

L = H ⊕
⊕
α∈φ

Lα.

Suppose that L has a proper non-zero ideal I. Since H consists of semisim-

ple elements, it acts diagonalisably on I, and so I has a basis of common

eigenvectors for the elements of adH. From Proposition 1.7.5 we know that

each root space Lα is 1-dimensional, this implies that

I = H1 ⊕
⊕
α∈φ1

Lα

for some subspace H1 of H = L0 and some subset φ1 of φ. Similarly, we

have

I⊥ = H2 ⊕
⊕
α∈φ2

Lα,

where I⊥ is the perpendicular space to I with respect to the Killing form.

As I⊕ I⊥ = L, we must have H1⊕H2 = H, φ1∩φ2 = {0}, and φ1∪φ2 = φ.

If φ2 is empty, then Lα ⊆ I for all α ∈ φ. As L is generated by its root

spaces, this implies that I = L, a contradiction. Similarly, φ1 is not empty.

Now, given α ∈ φ1 and β ∈ φ2, we have

〈α, β〉 = α(hβ) = 0

as α(hβ)eα = [hβ, eα] ∈ I⊥ ∩ I = 0, so (α, β) = 0 for all α ∈ φ1 and β ∈ φ2,

which shows that φ is reducible.

The converse is also true. See [11] Proposition 14.2 for a proof.

2.3 The Classical Lie Algebras

We shall now see that with five exceptions, every finite-dimensional simple

Lie algebra over C is isomorphic to one of the classical Lie algebras:

sl(n,C), so(n,C), sp(2n,C).

The five exceptional Lie algebras are known as E6, E7, E8, F4 and G2. For

an explicit construction of the Cartan subalgebra, root vectors and roots

for the classical Lie algebras see [11] Chapter 12. Here we will simply list

them and give the Cartan matrices and Dynkin diagrams:
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We have already introduced the family of special linear Lie algebras,

sl(` + 1,C) consisting of all traceless n× n matrices. We say that the root

system of sl(`+ 1,C) has type A`. The Cartan matrix is

A =



2 −1 0 . . . . . . . . . 0

−1 2 −1 . . . . . . . . . 0

0 −1 2 . . . . . . . . . 0
...

. . . . . .
...

...
. . . . . . −1

0 . . . . . . −1 2 −1

0 . . . . . . 0 −1 2


and the Dynkin diagram is:

�������� �������� �������� �������� �������� ��������α1 α2 α3 α`−2 α`−1 α`

This diagram is connected, so L is simple.

The remaining algebras can be defined as certain subalgebras of gl(n,C). If

S ∈ gl(n,C), then we can define a Lie subalgebra of gl(n,C) by

glS(n, F ) = {x ∈ gl(n, F ) |xtS = −Sx}.

Assume first of all that n = 2`. Take S to be the matrix with `× ` blocks:

S =

(
0 I`
I` 0

)
.

We define so(2`,C) = glS(2`,C). When n = 2`+ 1, we take

S =

1 0 0

0 0 I`
0 I` 0


and define so(2` + 1,C) = glS(2` + 1,C). These Lie algebras are known

as the orthogonal Lie algebras on even and odd dimensional spaces (the

structures for the even and odd cases are different).

For so(2`+ 1,C) the Cartan matrix is:

C =



2 −1 0 0 . . . 0

−1 2 −1 0 . . . 0

0 −1 2
. . . 0

...
...

. . . . . . 2 −1 0
...

. . . . . . −1 2 −2

0 . . . . . . 0 −1 2


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and so we get the Dynkin diagram:

�������� �������� �������� �������� �������� ��������>

α1 α2 α3 α`−2 α`−1 β`

As the Dynkin diagram is connected, φ is irreducible and so L is simple.

The roots system of so(2`+ 1,C) is said to have type B`. For the even case

so(2`,C) we have the following Cartan matrix:

C =



2 −1 0 0 . . . 0

−1 2 −1 0 . . . 0

0 −1 2
. . . 0

...
...

. . . . . . 2 −1 −1
...

. . . . . . −1 2 0

0 . . . . . . −1 0 2


and the corresponding Dynkin diagram is:

�������� �������� �������� �������� ��������
��������oooooo

��������OOO
OOO

α1 α2 α3 α`−3 α`−2

α`−1

β`

As this diagram is connected, the Lie algebra is simple. When ` = 3,

the Dynkin diagram is the same as that of A3, the root system for sl(3,C),

so we might expect that so(6,C) should be isomorphic to sl(4,C). This is

indeed the case. For ` ≥ 4 the root system of so(2`,C) is said to have type

D`.

The Lie algebras sp(n,C) are only defined for even n. If n = 2`, we take

S =

(
0 I`
−I` 0

)
and define sp(2`,C) = glS(2`,C). These Lie algebras are known as the

sympletic Lie algebras.

The Cartan matrix is:

A =



2 −1 0 . . . . . . 0

−1 2 −1 . . . . . . 0

0 −1
. . . . . . 0

...
...

... −1 0
...

... −1 2 −1

0 . . . . . . 0 −2 2


.
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The Dynkin diagram of φ is

�������� �������� �������� �������� �������� ��������<

α1 α2 α3 α`−2 α`−1 β`

which is connected, so L is simple.

The root system of sp(2`,C) is said to have type C`. Since the root

systems C2 and B2 have the same Dynkin diagram, we might expect that

the Lie algebras sp(4,C) and so(5,C) would be isomorphic. This is the case.

Two different Cartan subalgebras of L cannot give different root systems.

Lie algebra of types A`, B`, C`, and D` include all of the classical root

systems. Explicit constructions of the exceptional Lie algebras are much

more complicated and can be found in [11] Section 13.2.

A root system is determined up to isomorphism by its Dynkin diagram.

Therefore, the problem of finding all the root systems can be reduced to the

problem of finding all Dynkin diagrams.

Theorem 2.3.1. Any irreducible root system is one of the classical root sys-

tems An, n ≥ 1, Bn, n ≥ 2, Cn, n ≥ 3, Dn, n ≥ 4, or one of the exceptional

roots systems G2, F4, E6, E7, E8:

�������� �������� �������� �������� ��������
��������

E6

�������� �������� �������� �������� �������� ��������
��������

E7

�������� �������� �������� �������� �������� �������� ��������
��������

E8

�������� �������� �������� ��������>F4

�������� ��������>G2

Proof. For a proof see [11] Chapter 13.

2.4 The Universal Enveloping Algebra

For any Lie algebra L, one can construct its universal enveloping algebra

U(L) which passes from the non-associative structure of L to a unital asso-
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ciative algebra which captures the important properties of L. In this section

we give a formal definition of the universal enveloping algebra and explain

how it is constructed.

If A and B are vector spaces, we can form their tensor product as vector

spaces. We define a product structure on A⊗B by defining

(a1 ⊗ b1)(a2 ⊗ b2) := a1a2 ⊗ b1b2. (2.3)

If in addition, both A and B have unit elements, then 1⊗1 is a unit element

for A ⊗ B. We have an isomorphism of A into A ⊗ B given by a 7→ a ⊗ 1

when both A and B are associative algebras with units. Similarly for B.

Note that

(a⊗ 1) · (1⊗ b) = a⊗ b = (1⊗ b) · (a⊗ 1).

Recall that a representation ρ assigns to any element x ∈ L a linear

operator ρ(x). Sometimes it is useful to view a representation of a Lie

algebra as a representation of an associative algebra. This can be done

using the associated universal enveloping algebra.

Definition 2.4.1. A universal enveloping algebra is an associative unitary

algebra U(L) with a Lie algebra homomorphism ϕ : L → U(L) satisfying

ϕ([x, y]) = ϕ(x)ϕ(y) − ϕ(y)ϕ(x) for all x, y ∈ L and such that for any

Lie algebra homomorphism f : L → A into a unitary associative algebra

A (which also satisfies f([x, y]) = f(x)f(y) − f(y)f(x)) there also exists

a unique homomorphism ψ : U(L) → A such that the following diagram

commutes:

L
f //

ϕ

!!DD
DD

DD
DD A

U(L)

ψ

OO

that is, f = ψ ◦ ϕ.

Let V be a finite-dimensional vector space over F . In order to construct

the universal enveloping algebra, we must first define the tensor algebra on

V , T (V ) :=
⊕∞

i=0 T
iV , where

T 0 = F

T 1 = V

T 2 = V ⊗ V
Tm = V ⊗ V ⊗ . . .⊗ V (m times).
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If we take V = L to be a Lie algebra, and let I be the two sided ideal

in T (L) generated by the elements [x, y]− x⊗ y + y ⊗ x then

U(L) := T (L)/I

is a universal enveloping algebra for L.

Let q : T (L) → U(L) be a linear map. For any basis {xj | j ∈ J} of

L, the images q(xj1 ⊗ . . . ⊗ xjn) in L of tensor monomials xj1 ⊗ . . . ⊗ xjn
span the enveloping algebra over F , since they span the tensor algebra.

Suppose J is ordered. Using the Lie bracket [ , ] we can do a certain amount

of rearranging of the xjk in a monomial. We anticipate that everything

in U(L) can be written to be a sum of monomials xj1 · . . . · xjn where

j1 ≤ j2 ≤ . . . ≤ jn. A monomial in which the indices possess this ordering

is a standard monomial.

Theorem 2.4.2 (Poincaré-Birkhoff-Witt). The standard monomials form

a basis of U(L).

Proof. See [12].

Therefore, for any Lie algebra L with an ordered basis x1, x2, . . . the

Poincaré-Birkhoff-Witt Theorem gives that the universal enveloping algebra

U(L) of L has a basis xa11 . . . xass , a ≥ 0 and the defining relations of U(L)

are the same as the relations [xi, xj] =
∑
akijxk, a

k
ij ∈ F between the basis

elements of L.

Example 2.4.3. Let L = sl(2,C) with its usual basis, f, e, h. We know the

structure constants and therefore we can calculate in the algebra U(L). We

write f , e,h for the generators of U(L). U(L) contains all polynomials in

e, f and h. But in addition, U(L) contains products of these elements. We

can use the relations ef − fe = h, he− eh = 2e, and hf − fh = −2f , valid

in U(L). Therefore, the associative algebra U(sl(2,C)) has as a vector space

basis

{fahbec|a, b, c ≥ 0}.

Remark 2.4.4. Let L be a Lie algebra. The universal enveloping algebra of

a L is unique (up to isomorphism).

2.5 Casimir Operator

We now look at the Casimir operator associated to a Lie algebra repre-

sentation. Let L be a simple Lie algebra over C. Let V be a faithful



2.5. CASIMIR OPERATOR 41

L-module with associated representation ρ : L → End(V ). Let Bρ(x, y) :=

tr(ρ(x) ◦ ρ(y)) be a symmetric and associative bilinear form on L. We

call Bρ the trace form associated to the representation ρ. As L is simple,

ker(Bρ) = 0 which in turn implies that Bρ is nondegenerate (Note that

Bad = κ). The Casimir operator is an element of the centre of the univer-

sal enveloping algebra of the Lie algebra L, it is an important element of

U(L) as it can be easily written down. In this section we will investigate

some general properties of the Casimir operator of a semisimple Lie algebra

L, and we will show, using Schur’s Lemma, that the Casimir operator is

proportional to the identity.

Definition 2.5.1. Let {xi} be a basis of L with {yi} its dual basis with

respect to Bρ. The Casimir element Ω over the Lie algebra L with respect

to ρ is defined by

Ω =
n∑
i=1

xiyi ∈ U(L) (2.4)

and the Casimir operator of the representation ρ is defined by

Ωρ = ρ(Ω) =
n∑
i=1

ρ(xi)ρ(yi). (2.5)

Lemma 2.5.2. Let Ωρ be the Casimir operator of ρ. Let {xi} and {yi} be

dual bases with respect to Bρ. Then tr(Ωρ) = dimL.

Proof. tr(Ωρ) =
∑

i tr
(
ρ(xi) ◦ ρ(yj)

)
=
∑

iBρ(xi, yi) = dimL.

Remark 2.5.3. Recall the definition of the universal enveloping algebra (Def-

inition 2.4.1). Let ρ : L→ End(V ) be a representation and let A = End(V )

be the unitary associative algebra given in Definition 2.4.1. We obtain an

algebra homomorphism ρ̄ : U(L) → End(V ) given by ρ̄(w1 · . . . · wk) =

ρ(w1) ◦ ρ(w2) ◦ . . . ◦ ρ(wk) (where, for example, w1 · w2 ∈ U(L) denotes the

class of w1 ⊗ w2 ∈ τ(L) in U(L) = τ(L)/I).

Remark 2.5.4. Again, let {xi} be a basis of L with a dual basis with respect

to Bρ, {yi}. Define t :=
∑

i xi⊗ yi ∈ L⊗L to be a type of Casimir element.

As Bρ is nondegenerate, it induces an isomorphism Ψ : L ⊗ L → End(L)

given by Ψ(a ⊗ b) = Bρ(b,−)a. Since
∑

iBρ(yi, x) · xi = x for all x ∈ L,

then Ψ(t) = 1L, hence t does not depend on the choice of basis {xi}. This

implies that Ω and Ωρ do not depend on the choice of basis. However, t and

Ω depend on the bilinear form Bρ, and Ωρ depends on ρ.



42 CHAPTER 2. CARTAN MATRICES AND DYNKIN DIAGRAMS

Lemma 2.5.5. For each x ∈ L with [x, xi] =
∑

j aijxj and [x, yi] =
∑

j bijyj
we have aik = −bki.

Proof. We can write aik =
∑

j aijδjk =
∑

j aijBρ(xj, yk) = Bρ

(
[x, xi], yk

)
= −Bρ

(
xi, [x, yk]

)
which is true by the associativity of Bρ. This is equal to

−
∑

j bkjBρ(xi, yj) = −bki.

Lemma 2.5.6. For all x ∈ L we have [ρ(x),Ωρ] = 0.

Proof. We know that if x, y, z ∈ gl(V ), then [x, yz] = [x, y]z + y[x, z]. Us-

ing this and Equation (2.4) we have [x,Ω] =
∑

i[x, xiyi] =
∑

i[x, xi]yi +∑
i xi[x, yi]. We can write this as

∑
ij aijxjyi +

∑
ij bijxiyj. From Lemma

2.5.5 this is equal to zero. Applying the algebra homomorphism ρ̄ to [x,Ω]

we find that [ρ(x),Ωρ] = 0 as required.

If ρ = ad : L → End(L), then Bρ = κ and we have [Ωad, ad(x)] = 0 for

all x ∈ L. Hence, from Lemma 1.3.16 we have Ωad ∈ C · 1L. As we have

tr(Ωad) = dimL from Lemma 2.5.2, we obtain Ωad = 1L. Over C, for simple

Lie algebra L and faithful irreducible finite dimensional representation ρ :

L→ End(V ) we can use Schur’s Lemma, Lemma 1.4.9, to obtain

Ωρ =
dimL

dimV
· 1V . (2.6)

Example 2.5.7. Let L = sl(2,C) and consider the natural representation

φ : L→ gl(V ), dimV = 2. The dual basis with respect to the trace form of

the standard basis {e, f, h} is {f, e, h
2
}.

So,

Ωφ = e ◦ f + f ◦ e+
1

2
h ◦ h =

(
3
2

0

0 3
2

)
=

3

2
· 1V , V = C2.

Example 2.5.8. Again, let L = sl(2,C) and consider the adjoint repre-

sentation ad : L → gl(L), dim(L) = 3. The dual basis with respect to the

Killing form is {f
4
, e

4
, h

8
}. We have,

Ωad =
1

4
ad e ◦ ad f +

1

4
ad f ◦ ad e+

1

8
adh ◦ adh.

We use the results of Example 1.4.5 to obtain

Ωad =
1

4

2 0 0

0 2 0

0 0 0

+
1

4

2 0 0

0 0 0

0 0 2

+
1

4

0 0 0

0 2 0

0 0 2

 = 1V , V = C3.
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Remark 2.5.9. Let eij be the n × n matrix with 1 at the ij-th position

and zero at all other positions. Let hi = eii − ei+1,i+1 for 1 ≤ i < n, and

h∗i = 1
n
((n− i)e11 + (n− i)e22 + . . .+ (n− i)eii− iei+1,i+1− . . .− ienn). Then

the Casimir element Ω associated to the natural representation φ in sl(n)

with respect to the trace form is given by

Ωφ =
∑

1≤i<n

hih
∗
i +

∑
i 6=j

eijeji. (2.7)





Chapter 3

Preliminaries to the Classical

Yang-Baxter Equation

In this chapter we introduce the maps ϕ1 : L ⊗ L → Hom(L,L) and ϕ2 :

L⊗L⊗L→ Hom(L⊗L,L), which are induced by the Killing form κ on L

where L is a simple finite-dimensional Lie algebra over C. These maps will

be our main tool in reformulating the proofs of Belavin and Drinfeld into a

coordinate-free language. We prove several propositions which will be used

extensively throughout the following chapters. First however, we must take

a brief look at some required preliminaries in complex analysis.

3.1 Complex Analysis Preliminaries

We know that functions, holomorphic in a disc, can be represented there by

a power series.

Theorem 3.1.1. Let f be holomorphic on a closed disc D̄(z0, R), R > 0.

Let CR be the circle bounding the disc. Then f has a power series expansion

f(z) =
∑

an(z − z0)n

whose coefficients an are given by the formula:

an =
1

2πi

∫
CR

f(z)

(z − z0)n+1
dz.

Proof. For a proof see [17] Section III Theorem 7.3.

45
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A somewhat similar representation can be derived for functions holo-

morphic in an annulus R1 < |z − z0| < R2. These two-sided power series

are known as Laurent expansions.

Theorem 3.1.2. Let r, R be positive numbers with 0 ≤ r < R. Let A be

the annulus consisting of all complex numbers z such that r < |z| < R, and

let f be a holomorphic function on A. Let r < s < S < R. Then f has a

Laurent expansion

f(z) =
∞∑
−∞

anz
n

which converges absolutely and uniformly on s ≤ |z| ≤ S. Let CR and Cr
be the circles of radius R and r, respectively. Then the coefficients an are

obtained by the formula:

an =
1

2πi

∫
CR

f(z)

zn+1
dz if n ≥ 0,

an =
1

2πi

∫
cr

f(z)

zn+1
dz if n < 0.

Proof. For a proof see [17] Section V, Theorem 2.1.

Definition 3.1.3. Suppose that U is an open subset of the complex num-

bers C, and the point z0 ∈ U . Let f be a complex differentiable function

defined in some neighbourhood around z0. If f is not defined at z0 but

has values defined on U\{z0} then z0 is an isolated singularity of f . The

singularity z0 is called

1. removable if there exists a holomorphic function g defined on all U

such that f(z) = g(z) for all z ∈ U \ {z0}. The function g is a

continuous replacement for the function f ,

2. a pole if there exists a holomorphic function g defined on U and a

natural number n such that f(z) = g(z)/(z − z0)n for all z ∈ Z\{z0}.
The derivative at a pole may or may not exist. If g(z0) 6= 0, then we

say that z0 is a pole of order n,

3. essential if z0 is neither removable nor a pole. The point z0 is an

essential singularity if and only if the Laurent expansion has infinitely

many powers of negative degree.

In the preceding chapters, the singularities we will examine will be of

type 2, poles. A pole of a function f is said to be simple if it is of order 1.

If f has a simple pole at z0 then a−1 = limz→z0(z − z0)f(z).
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Example 3.1.4. The function 1
z

has a simple pole at the origin.

Example 3.1.5. The function 1
sin z

has a simple pole at the origin. This is

because

sin z = z − z3

3!
+
z5

5!
− · · ·

Therefore,
1

sin z
=

1

z
· 1

1− ( z
2

3!
− z4

5!
+ · · · )

.

We know that 1
1−h = 1 + h+ h2 + · · · for |h| < 1, and as the series∣∣∣( z23!

− z4

5!
+ · · ·

)∣∣∣ = | sin z
z
− 1| < ε for all ε > 0 and δ > 0 if |z| < δ we can

write this as
1

sin z
=

1

z
(1 + higher terms).

Definition 3.1.6. Let f : U → C be defined on an open subset U ⊂ C
except for a discrete set of points S which are poles. Then we say that f

is meromorphic on U . We say that f is meromorphic at a point z0 if f is

meromorphic on some open set U containing z0.

Example 3.1.7. Let P (z) be a polynomial. Then f(z) = 1
P (z)

is a mero-

morphic function.

Remark 3.1.8. If z0 is a pole of f , then there exists an integer n such that

(z − z0)nf(z) is holomorphic in a neighbourhood of z0.

Remark 3.1.9. Let f be a meromorphic function on an open subset U ⊂ C
such that there exists an open disc D ⊂ U with f |D ≡ 0. Then f ≡ 0 on all

of U . This is known as the Identity Theorem or the Uniqueness Principle.

This theorem can be extended from C to Cn, n > 1 [20].

Definition 3.1.10. Suppose z0 is an isolated singularity of f with Laurent

series expansion
∑

k∈Z ak(z − z0)k in a punctured disc about z0. Then a−1

is the residue of f at z0, denoted by Res(f, z0).

Example 3.1.11. The residue of (sin z)/z2 at z = 0 is found using the

equation

sin z

z2
=

1

z2

(
z − z3

3!
+ · · ·

)
=

1

z
+ higher terms.

The desired residue is 1.
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Example 3.1.12. The residue of ez

z5
at z = 0 is found by

ez

z5
=

1

z5
·
(
1 + z +

z2

2!
+ · · ·

)
=

1

z5
+

1

z4
+

1

2!z3
+

1

3!z2
+

1

4!z
+ · · ·

and the desired residue is 1
24

.

Cauchy’s Residue Theorem is used to evaluate contour integrals (inte-

grals where the function to be integrated is evaluated along a curve) of

analytic functions over closed curves that have one or more poles inside the

contour.

Theorem 3.1.13. (Cauchy Residue Theorem) Let f(z) be analytic inside

and on a simple closed contour C, except for a finite number of isolated

singular points z1, . . . , zn located inside C. Then∫
C

f(z)dz = 2πi
n∑
j=1

aj (3.1)

where aj is the residue of f(z) at z = zj.

Definition 3.1.14. An elliptic function is a meromorphic function f defined

on C for which there exists two nonzero complex numbers ω1 and ω2 with

ω1/ω2 not real such that

f(z + ω1) = f(z + ω2) = f(z) for all z ∈ C

wherever f(z) is defined. That is,

f(z +mω1 + nω2) = f(z) for all z ∈ C, m, n ∈ Z.

Remark 3.1.15. Fix ω1 and ω2. The corresponding elliptic functions form a

field. The parallelogram with vertices 0, ω1, ω2, ω1 + ω2 is called the funda-

mental parallelogram Π. Any C-translate α + Π of Π is a period parallelo-

gram. We can conclude the following: For any period parallelogram α+ Π,

any point in C is congruent modulo Zω1 + Zω2 to one and only one point

of α + Π.

Theorem 3.1.16. If f(z) is an elliptic function with no poles on the bound-

ary C of a period parallelogram α+ Π, then the sum of the residues of f(z)

in α + Π is zero.

Proof. For a proof see [16] Proposition 6.3.
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3.2 Isomorphisms induced by the Killing form

In this section we prove several propositions which will be used extensively

in later chapters. The strategy we employ here, whereby we introduce two

linear maps ϕ1 and ϕ2, is to prove the commutativity of several diagrams

with useful results. Throughout this section we will assume that L is a

finite-dimensional simple Lie algebra over the complex field C.

Recall from Theorem 1.6.12 that as L is simple, the Killing form κ is

nondegenerate. From Lemma 1.6.17 this means that κ induces an isomor-

phism ϕ : L→ L∗.

Definition 3.2.1. Let the linear map ϕ : L → L∗ be defined by ϕ(x) =

κ(x,−).

1. We define the map ϕ1 = 1L ⊗ ϕ : L ⊗ L → Hom(L,L) ∼= L ⊗ L∗ by

ϕ1(a⊗b) = κ(b,−)a. That is, ϕ1(a⊗b)(p) = κ(b, p)a for all a, b, p ∈ L.

2. We define the map

ϕ2 = 1L ⊗ ϕ ⊗ ϕ : L ⊗ L ⊗ L → Hom(L ⊗ L,L) ∼= L∗ ⊗ L∗ ⊗ L

by ϕ2(a ⊗ b ⊗ c) = κ(b,−)κ(c,−)a. That is, ϕ2(a ⊗ b ⊗ c)(p ⊗ q) =

κ(b, p)κ(c, q)a for all a, b, c, p, q ∈ L

Definition 3.2.2. We use Remark 2.5.4 to define an element t ∈ L⊗L by

ϕ1(t) = 1L. This tensor t is called the Casimir element.

Lemma 3.2.3. Let {Iµ} be an orthonormal basis in L with respect to the

Killing form. The Casimir element can be written

t =
∑
µ

Iµ ⊗ Iµ ∈ L⊗ L.

Proof. As {Iµ} is an orthonormal basis we know that κ(Iα, Iβ) = δαβ. From

Definition 3.2.2 we know that ϕ1(t) = 1L. We calculate ϕ1(
∑

µ Iµ⊗Iµ)(v) =∑
µ κ(Iµ, v)Iµ = v. Hence, ϕ1(

∑
µ Iµ ⊗ Iµ) = 1L = ϕ1(t). As ϕ1 is an

isomorphism we must have
∑

µ Iµ ⊗ Iµ = t.

Proposition 3.2.4. Let f, g ∈ Hom(L,L), and let f ∗ be the adjoint map of

f with respect to the Killing form (see Definition 1.6.7). Let σ : Hom(L,L)→
Hom(L,L) be given by σ(h) = f ◦ h ◦ g∗ for h ∈ L. Then the following dia-

gram is commutative:

L⊗ L ϕ1 //

f⊗g
��

Hom(L,L)

σ

��
L⊗ L ϕ1 // Hom(L,L)
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Proof. For a, b, x ∈ L we have ϕ1((f ⊗ g)(a ⊗ b))(x) = ϕ1(f(a) ⊗ g(b))(x).

Using Definition 3.2.1 we can write this as κ(g(b), x)f(a) = f(κ(b, g∗(x))a)

which is equal to f(ϕ1(a⊗ b)(g∗(x))) = σ(ϕ1(a⊗ b))(x) as required.

Lemma 3.2.5. Let A,B,C ∈ End(L). The following diagram is commuta-

tive:

L⊗ L⊗ L ϕ2 //

A⊗B⊗C
��

Hom(L⊗ L,L)

σ

��
L⊗ L⊗ L ϕ2 // Hom(L⊗ L,L)

Where σ is the map which sends ψ ∈ Hom(L⊗ L,L) to A ◦ ψ ◦ (B∗ ⊗ C∗).

Proof. We calculate

σ
(
ϕ2(x⊗ y ⊗ z)

)
(p⊗ q) = A ◦ ϕ2(x⊗ y ⊗ z) ◦ (B∗ ⊗ C∗)(p⊗ q)

which is equal to A
(
κ(y,B∗(p))κ(z, C∗(q))x

)
= A

(
κ(B(y), p)κ(C(z), q)x

)
.

This can be written as κ(B(y), p)κ(C(z), q)A(x) and using Definition 3.2.1

we know that this is equal to ϕ2(A(x)⊗B(y)⊗ C(z))(p⊗ q) or

(
ϕ2

(
(A⊗

B ⊗ C)(x⊗ y ⊗ z)
))

(p⊗ q).

Recall again the definition of the adjoint of a map (Definition 1.6.7). Let us

denote by ∗ : Hom(L,L)→ Hom(L,L) the map which send f to its adjoint

f ∗.

Proposition 3.2.6. Let τ : L ⊗ L → L ⊗ L denote the swapping map

τ(a⊗ b) = b⊗ a. The following diagram is commutative:

L⊗ L ϕ1 //

τ

��

Hom(L,L)

∗
��

L⊗ L ϕ1 // Hom(L,L)

Proof. Let f = ϕ1(a ⊗ b) = κ(b,−)a and let g = ϕ1(τ(a ⊗ b)) = κ(a,−)b.

Then, κ(f(u), v) = κ(κ(b, u)a, v) for all u, v ∈ L. This is equal to κ(u, b)κ(a, v)

= κ(u, κ(a, v)b) = κ(u, g(v)). Therefore, g = f ∗, that is ϕ1(τ(A)) =

(ϕ1(A))∗ for all A ∈ L⊗ L.

Let A be an associative algebra with unit containing L (for example the

universal enveloping algebra). Then A⊗A and A⊗A⊗A are also associative

algebras. Multiplication in these algebras is defined by (a⊗b)(p⊗q) = ap⊗bq
and (a⊗b⊗c)(p⊗q⊗r) = ap⊗bq⊗cr respectively, for all a, b, c, p, q, r ∈ A.

If we apply Remark 1.1.3 to A⊗ A and A⊗ A⊗ A we obtain
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1. [a ⊗ b, p ⊗ q] = (a ⊗ b)(p ⊗ q) − (p ⊗ q)(a ⊗ b) = ap ⊗ bq − pa ⊗ qb.
Similarly,

2. [a⊗ b⊗ c, p⊗ q ⊗ r] = ap⊗ bq ⊗ cr − pa⊗ qb⊗ rc

for all a, b, c, p, q, r ∈ A.

Remark 3.2.7. Let a, b, c ∈ L and let a⊗b, 1⊗c ∈ A⊗A. Then [a⊗b, 1⊗c] =

a⊗ [b, c] ∈ L⊗ L.

Definition 3.2.8. Define the linear maps φ12, φ13, φ23 : A⊗A→ A⊗A⊗A
by: φ12(a⊗ b) = a⊗ b⊗ 1, φ13(a⊗ b) = a⊗ 1⊗ b and φ23(a⊗ b) = 1⊗ a⊗ b.
For brevity we will write (a⊗ b)ij for φij(a⊗ b).

Example 3.2.9. 1.[
(a⊗ b)12, (c⊗ d)13

]
= [a⊗ b⊗ 1, c⊗ 1⊗ d]

= (a⊗ b⊗ 1)(c⊗ 1⊗ d)− (c⊗ 1⊗ d)(a⊗ b⊗ 1)

= a · c⊗ b · 1⊗ 1 · d− c · a⊗ 1 · b⊗ d · 1
= (ac− ca)⊗ b⊗ d
= [a, c]⊗ b⊗ d.

2. Similarly, [
(a⊗ b)12, (c⊗ d)23

]
= a⊗ [b, c]⊗ d

3. and, [
(a⊗ b)13, (c⊗ d)23

]
= a⊗ c⊗ [b, d].

Proposition 3.2.10. Let a, b ∈ L. Let φ : L → L be an automorphism of

Lie algebras, that is, φ
(
[a, b]

)
= [φ(a), φ(b)]. For c ∈ L,

[a⊗ b, φ(c)⊗ 1 + 1⊗ c] = 0

is equivalent to

[φ−1(a)⊗ b, c⊗ 1 + 1⊗ c] = 0.

Proof. [a⊗ b, φ(c)⊗ 1] + [a⊗ b, 1⊗ c] = [a, φ(c)]⊗ b + a⊗ [b, c] = 0. If we

apply φ−1⊗1 to this equation we find [φ−1(a), c]⊗ b+φ−1(a)⊗ [b, c] = 0 or,

[φ−1(a)⊗b, c⊗1]+[φ−1(a)⊗b, 1⊗c] = 0, that is, [φ−1(a)⊗b, c⊗1+1⊗c] =

0.

Proposition 3.2.11. Let a, b, c ∈ L. Then, for all x in L we have

1. [ϕ1(a⊗ b)(x), c] = ϕ1

(
[a⊗ b, c⊗ 1]

)
(x).
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2. ϕ1(a⊗ b)[x, c] = −ϕ1

(
[a⊗ b, 1⊗ c]

)
(x).

Proof. 1. [ϕ1(a ⊗ b)(x), c] = [κ(b, x)a, c] = κ(b, x)[a, c] = ϕ1([a, c] ⊗
b)(x) = ϕ1([a⊗ b, c⊗ 1])(x).

2. ϕ1(a ⊗ b)[x, c] = κ(b, [x, c])a = −κ([b, c], x)a = −ϕ1(a ⊗ [b, c])(x) =

−ϕ1([a⊗ b, 1⊗ c])(x).

Proposition 3.2.12. Let A ∈ L⊗L and consider the linear maps σ1, σ2, σ3 :

L ⊗ L → L ⊗ L ⊗ L where σ1(B) = [A12, B13], σ2(B) = [A12, B23] and

σ3(B) = [A13, B23]. The following diagrams are commutative:

1.

L⊗ L ϕ1 //

σ1

��

Hom(L,L)

σ̃1
��

L⊗ L⊗ L ϕ2 // Hom(L⊗ L,L)

where σ̃1(f)(x⊗ y) = [ϕ1(A)(x), f(y)] for f ∈ Hom(L,L).

2.

L⊗ L ϕ1 //

σ2

��

Hom(L,L)

σ̃2
��

L⊗ L⊗ L ϕ2 // Hom(L⊗ L,L)

where σ̃2(f)(x⊗ y) = −ϕ1(A)([x, f(y)]) for f ∈ Hom(L,L).

3.

L⊗ L ϕ1 //

σ3

��

Hom(L,L)

σ̃3
��

L⊗ L⊗ L ϕ2 // Hom(L⊗ L,L)

with σ̃3(f)(x⊗ y) = ϕ1(A)([f ∗(x), y]) for f ∈ Hom(L,L).

Proof. Without loss of generality, we can assume that A = a ⊗ b. For

B = c⊗ d ∈ L⊗ L we have, for all x, y ∈ L,

1. ϕ2(σ1(B))(x ⊗ y) = ϕ2

(
[(a ⊗ b)12, (c ⊗ d)13]

)
(x ⊗ y). From Exam-

ple 3.2.9 part (1) this can be written as ϕ2([a, c] ⊗ b ⊗ d)(x ⊗ y) =

[κ(b, x)a, κ(d, y)c], which can be simplified using Definition 3.2.1 to

[ϕ1(A)(x), ϕ1(B)(y)] = σ̃1(ϕ1(B))(x⊗ y)
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2. Similarly, we have ϕ2(σ2(B))(x⊗ y) = ϕ2([(a⊗ b)12, (c⊗ d)23])(x⊗ y).

Using Example 3.2.9 part (2) we can write this as ϕ2(a⊗[b, c]⊗d)(x⊗y)

which is equal to −κ(b, [x, c])κ(d, y)a = −κ(b, [x, κ(d, y)c])a or

−ϕ1(A)([x, ϕ1(B)(y)]) = σ̃2(ϕ1(B))(x⊗ y)

3. We have ϕ2(σ3(B))(x⊗ y) = ϕ2([(a⊗ b)13, (c⊗ d)23])(x⊗ y). We can

use Example 3.2.9 part (3) to write this as ϕ2(a⊗ c⊗ [b, d])(x⊗ y) =

κ(b, [κ(c, x)d, y])a = κ(b[ϕ1(τB)(x), y])a. This gives

ϕ1(A)([ϕ1(B)∗(x), y]) which is equal to σ̃3(ϕ1(B))(x⊗ y) as required.

Definition 3.2.13. We define the map L : L⊗L→ L to be the Lie bracket.

That is, L(x⊗ y) = [x, y].

Proposition 3.2.14. Let x, y ∈ L. Let t be the Casimir element. Then

ϕ2([t12, t13])(x⊗ y) = L(x⊗ y) = [x, y]

Proof. From Proposition 3.2.12 we can see that

ϕ2([t12, t13])(x⊗ y) = [ϕ1(t)(x), ϕ1(t)(y)]) = [x, y].

Remark 3.2.15. The three identities in Proposition 3.2.12 can be rewritten

as follows,

ϕ2([A12, B13]) = L ◦ (ϕ1(A)⊗ ϕ1(B)),

ϕ2([A12, B23]) = −ϕ1(A) ◦ L ◦ (1L ⊗ ϕ1(B)),

ϕ2([A13, B23]) = ϕ1(A) ◦ L ◦ (ϕ1(τ(B))⊗ 1L).

Remark 3.2.16. From Proposition 3.2.4 we obtain for all A ∈ L⊗ L:

ϕ1

((
ϕ1(A)⊗ 1L

)
(t)

)
= ϕ1(A) ◦ ϕ1(t) = ϕ1(A).

Therefore,
(
ϕ1(A)⊗1L

)
(t) = A. Similarly, we can show

(
1L⊗ϕ1(τA)

)
(t) =

A. Hence,

A12 =
(
ϕ1(A)⊗ 1L ⊗ 1L

)
t12 =

(
1L ⊗ ϕ1(τA)⊗ 1L

)
t12,

A13 =
(
ϕ1(A)⊗ 1L ⊗ 1L

)
t13 =

(
1L ⊗ 1L ⊗ ϕ1(τA)

)
t13,

A23 =
(
1L ⊗ ϕ1(A)⊗ 1L

)
t23 =

(
1L ⊗ 1L ⊗ ϕ1(τA)

)
t23.
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Therefore,

[A12, B13] =

[(
1L ⊗ ϕ1(τA)⊗ 1L

)
t12,
(
1L ⊗ 1L ⊗ ϕ1(τB)

)
t13

]
=
(
1L ⊗ ϕ1(τA)⊗ ϕ1(τB)

)
[t12, t13].

[A12, B23] =

[(
ϕ1(A)⊗ 1L ⊗ 1L

)
t12,
(
1L ⊗ 1L ⊗ ϕ1(τB)

)
t23

]
=
(
ϕ1(A)⊗ 1L ⊗ ϕ1(τB)

)
[t12, t23].

[A13, B23] =

[(
ϕ1(A)⊗ 1L ⊗ 1L

)
t13,
(
1L ⊗ ϕ1(B)⊗ 1L

)
t23

]
=
(
ϕ1(A)⊗ ϕ1(B)⊗ 1L

)
[t12, t23].

Corollary 3.2.17. Let t be the Casimir element. For all A ∈ L ⊗ L we

have

[t12, A13 + A23] = 0,

[A12 + A13, t23] = 0.

Proof. Using Proposition 3.2.12 for all x, y ∈ L we find

ϕ2([t12, A13 + A23])(x⊗ y) = ϕ2([t12, A13])(x⊗ y) + ϕ2([t12, A23])(x⊗ y)

= [ϕ1(t)(x), ϕ1(A)(y)]− ϕ1(t)[x, ϕ1(A)(y)]

= [x, ϕ1(A)(y)]− [x, ϕ1(A)(y)] = 0.

Similarly, we find that [A12 + A13, t23] = 0.

Corollary 3.2.18. Let t be the Casimir element. Then,

[t12, t13] = −[t12, t23] = [t13, t23].

Proof. From Corollary 3.2.17 with A = t we have [t12, t13 + t23] = 0 and

[t12 + t13, t23] = 0. Then, [t12, t13] = −[t12, t23] and −[t12, t23] = [t13, t23].

Corollary 3.2.19. Let t be the Casimir element and let B ∈ L⊗L. Then,

[t12, B13] = 0 implies that B = 0,

[t12, B23] = 0 implies that B = 0,

[t13, B23] = 0 implies that B = 0,

[t23, B12] = 0 implies that B = 0.
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Proof. From part (1) of Proposition 3.2.12 we obtain, ϕ2

(
[t12, B13]

)
(x⊗y) =

[x, ϕ1(B)(y)] for all x, y ∈ L. If [t12, B13] = 0, then [x, ϕ1(B)(y)] = 0 for

all x, y ∈ L. That is, ϕ1(B)(y) ∈ Z(L) for all y ∈ L. But as L is simple,

Z(L) = 0 so ϕ1(B) = 0 and as ϕ1 is injective, we have B = 0. We also

have,

ϕ2

(
[t12, B23]

)
(x⊗ y) = −

[
x, ϕ1(B)(y)

]
,

ϕ2

(
[t13, B23]

)
(x⊗ y) =

[
ϕ1(τB)(x), y

]
.

Similar calculations allow us to conclude that if these equations equal zero,

thenB = 0. Finally, We calculate ϕ2

(
[X12, t23]

)
(x⊗y) = −ϕ1(X)[x, ϕ1(t)(y)]

= −ϕ1(X)[x, y] = 0 for all x, y ∈ L. As L is simple and ϕ1 is an isomor-

phism, we must have X = 0.

Definition 3.2.20. A constant r0 ∈ L⊗L is called nondegenerate if ϕ1(r0)

is an isomorphism.

Definition 3.2.21. A meromorphic function r : U → L ⊗ L, U ⊆ C is

called nondegenerate if there exists u0 ∈ U such that r is holomorphic at

u0 and r(u0) is nondegenerate in the sense of Definition 3.2.20.

Remark 3.2.22. The function r being nondegenerate means that the mero-

morphic function det(ϕ1(r(u))) for u ∈ U is not identically zero on U .

Therefore, it has only isolated zeros.

Lemma 3.2.23. Let A ∈ L⊗L. If A is nondegenerate, then [A12, A13] 6= 0.

Proof. If A is nondegenerate, then from Definition 3.2.20, ϕ1(A) is an iso-

morphism. This implies that im
(
ϕ1(A)

)
= L. From Proposition 3.2.12

part (1) we have ϕ2

(
[A12, A13]

)
(x⊗ y) = [ϕ1(A)(x), ϕ1(A)(y)] for all x, y ∈

L. If we assume that [A12, A13] = 0 we obtain now [X, Y ] = 0 for all

X, Y ∈ im
(
ϕ1(A)

)
= L, that is, L is abelian. But L is simple, therefore,

[A12, A13] 6= 0.

Corollary 3.2.24. If A ∈ L ⊗ L with [A12, A13] = 0 then there exists a

vector subspace V ⊂ L, V 6= L such that A ∈ V ⊗ L.

Proof. Let V := im
(
ϕ1(A)

)
⊂ L. From Lemma 3.2.23 we have that A is

degenerate, that is, ϕ1(A) is not an isomorphism. Therefore, V 6= L. From

Remark 3.2.16 we have A = (ϕ1(A)⊗ 1L)(t) ∈ im
(
ϕ1(A)

)
⊗ L = V ⊗ L as

required.
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Proposition 3.2.25. Let L be a simple Lie algebra over C. Let A ∈ L⊗L,

then [A, 1 ⊗ h + h ⊗ 1] = 0 for all h ∈ L if and only if A = λ · t for some

λ ∈ C, where t is the Casimir element.

Proof. Let us rewrite [1 ⊗ h + h ⊗ 1, A] as (1L ⊗ ad(h) + ad(h) ⊗ 1L)(A).

We can now use Lemma 3.2.4 to obtain

ϕ1

(
(1L⊗ ad(h) + ad(h)⊗ 1L)(A)

)
= ϕ1(A) ◦ ad(h)∗ + ad(h) ◦ϕ1(A). (3.2)

We need to calculate ad(h)∗. We know that κ([h, u], v) = −κ([u, h], v) =

−κ(u, [h, v]). So ad(h)∗ = − ad(h). Using this in Equation (3.2) we find

ϕ1

(
(1L ⊗ ad(h) + ad(h)⊗ 1L)(A)

)
= −ϕ1(A) ◦ ad(h) + ad(h) ◦ ϕ1(A)

= [ad(h), ϕ1(A)].

Therefore, ϕ1

(
[A, 1⊗h+h⊗ 1]

)
= [ϕ1(A), ad(h)] and [A, 1⊗h+h⊗ 1] = 0

for all h ∈ L, if and only if [ϕ1(A), ad(h)] = 0 for all h ∈ L. We know that

ϕ1(A) ∈ End(L) and so we can apply Lemma 1.3.16 to give us ϕ1(A) =

λ · 1L = λ · ϕ1(t). Therefore, A = λt, λ ∈ C as required.



Chapter 4

Nondegenerate Solutions to

the CYBE

In [6] and [4] A.A. Belavin and V.G.Drinfeld investigated the nondegen-

erate solutions to the classical Yang-Baxter equation (CYBE), for finite-

dimensional, simple Lie algebras over C. In this chapter we will discuss the

CYBE in more detail. Our aim is to prove Belavin and Drinfeld’s charac-

teristisation of non-degeneracy. We have already studied in some detail in

Chapter 3 the linear maps ϕ1 and ϕ2. Here we will use these maps to rewrite

the proofs of Belavin and Drinfeld in a coordinate-free language. Through-

out this chapter we will assume that L is a finite-dimensional simple Lie

algebra over the complex field C.

4.1 The Classical Yang-Baxter Equation

For a function r : U × U → L ⊗ L we consider rij : U × U → A ⊗ A ⊗ A,

where A is a unital associative algebra with unit (see page 50), defined by

rij(a, b) = (r(a, b))ij, 1 ≤ i < j ≤ 3.

Remark 4.1.1. In terms of a basis {Iµ} of L we can write

r(u, v) =
∑
µν

rµν(u, v)Iµ ⊗ Iν ,

where rµν is a meromorphic function. We can then obtain a matrix of the

57
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coefficients of r(u, v):

r(u, v) =

r11(u, v) r12(u, v) . . . r1n(u, v)
...

... . . .
...

rn1(u, v) rn2(u, v) . . . rnn(u, v)

 .

Definition 4.1.2. The classical Yang-Baxter equation (CYBE) is the func-

tional equation

[r12(u1, u2), r13(u1, u3)] + [r12(u1, u2), r23(u2, u3)]

+ [r13(u1, u3), r23(u2, u3)] = 0. (4.1)

Remark 4.1.3. Solutions r to the classical Yang-Baxter equation are fre-

quently called classical r-matrices (or simply r-matrices). They play an

important role in mathematical physics, representation theory, integrable

systems and statistical mechanics.

4.2 Equivalence of Solutions

Given a solution r of the CYBE, Equation (4.1), we can obtain a solution

which is equivalent to this one in two ways. In this section we prove two

propositions which obtain equivalent solutions to the CYBE and give a

version of the CYBE which depends on the difference of the parameters

only.

Proposition 4.2.1. If r(u1, u2) is a solution of the classical Yang-Baxter

equation and f is a function with values in Aut(L), then r̃(u1, u2) = (f(u1)⊗
f(u2) )(r(u1, u2)) is also a solution.

Proof. We know that

[r12(u1, u2), r13(u1, u3)]+[r12(u1, u2), r23(u2, u3)]+[r13(u1, u3), r23(u2, u3)] = 0

(4.2)

and we must show that[(
(f(u1)⊗ f(u2))r(u1, u2)

)12
,
(
(f(u1)⊗ f(u3))r(u1, u3)

)13
]

+
[(

(f(u1)⊗ f(u2))r(u1, u2)
)12
,
(
(f(u2)⊗ f(u3))r(u2, u3)

)23
]

+
[(

(f(u1)⊗ f(u3))r(u1, u3)
)13
,
(
(f(u2)⊗ f(u3))r(u2, u3)

)23
]

= 0. (4.3)
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Applying ϕ2 to Equation (4.2) and using Proposition 3.2.12 we see that for

all x, y ∈ L we have,[
ϕ1

(
r(u1, u2)

)
(x), ϕ1

(
r(u1, u3)

)
(y)
]
− ϕ1

(
r(u1, u2)

)[
x, ϕ1(r(u2, u3)(y)

]
+ ϕ1

(
r(u1, u3)

)[
ϕ1(r(u2, u3))∗(x), y

]
= 0

and similarly Equation (4.3) is equivalent to[
ϕ1

((
f(u1)⊗ f(u2)

)
r(u1, u2)

)
(x), ϕ1

((
f(u1)⊗ f(u3)

)
r(u1, u3)

)
(y)
]

− ϕ1

((
f(u1)⊗ f(u2)

)
r(u1, u2)

)[
x, ϕ1

((
f(u2)⊗ f(u3)

)
r(u2, u3)

)
(y)
]

+ϕ1

((
f(u1)⊗f(u3)

)
r(u1, u3)

)[
ϕ1

((
f(u2)⊗f(u3)

)
r(u2, u3)

)∗
(x), y

]
= 0.

(4.4)

If we look at the first bracket of Equation (4.4) and using Lemma 3.2.4 we

find that,[
ϕ1

((
f(u1)⊗ f(u2)

)
r(u1, u2)

)
(x), ϕ1

((
f(u1)⊗ f(u3)

)
r(u1, u3)

)
(y)
]

=
[(
f(u1) ◦ ϕ1(r(u1, u2)) ◦ f(u2)∗

)
(x),

(
f(u1) ◦ ϕ1(r(u1, u3)) ◦ f(u3)∗

)
(y)
]
.

Because f(u1) ∈ Aut(L) we can write this as

= f(u1)
[(
ϕ1(r(u1, u2)) ◦ f(u2)∗

)
(x),

(
ϕ1(r(u1, u3)) ◦ f(u3)∗

)
(y)
]
.

From Proposition 3.2.12 part (1) we can write this as

= f(u1)
(
ϕ2

(
[r12(u1, u2), r13(u1, u3)]

)((
f(u2)∗ ⊗ f(u3)∗

)
(x⊗ y)

))
.

Now we use Lemma 3.2.5 to obtain,

= ϕ2

((
f(u1)⊗ f(u2)⊗ f(u3)

)(
[r12(u1, u2), r13(u1, u3)]

))
(x⊗ y).

Computing the second and third bracket similarly, but using the identity

f(u)∗ ◦ f(u) = 1L from the proof of Lemma 1.6.9, we find that the left-

hand-side of Equation (4.4) is equivalent to

ϕ2(f(u1)⊗ f(u2)⊗ f(u3))
(

[r12(u1, u2), r13(u1, u3)]

+ [r12(u1, u2), r23(u2, u3)] + [r13(u1, u3), r23(u2, u3)]
)

which is equal to zero by assumption of the theorem. Therefore,
(
f(u1) ⊗

f(u2)
)
r(u1, u2) is a solution of CYBE, Equation (4.1).
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We now define an equivalence relation on solutions to the CYBE as

follows: Solutions r and r̃ are equivalent if there exists a function f : U →
Aut(L) such that r̃(u1, u2) =

(
f(u1)⊗ f(u2)

)(
r(u1, u2)

)
:

1. reflexivity holds if we let f(u) = 1L for all u ∈ U .

2. the relation is symmetric as f(u)−1 is also an automorphism of L, so

we can apply f(u1)−1⊗f(u2)−1 to both sides of the relation to obtain

(f(u1)−1 ⊗ f(u2)−1)r̃(u1, u2) = r(u1, u2).

3. to show that the relation is transitive, we let r̄(u1, u2) =
(
g(u1) ⊗

g(u2)
)
r̃(u1, u2). Then r̄(u1, u2) =

(
g(u1)⊗ g(u2)

)(
f(u1)

⊗f(u2)
)(
r(u1, u2)

)
which is equal to

(
g(u1)f(u1)⊗ g(u2)f(u2)

)(
r(u1, u2)

)
.

Definition 4.2.2. The function r is said to be invariant with respect to

h ∈ L if [h⊗ 1 + 1⊗ h, r] = 0. A solution which is invariant with respect to

every element of a subalgebra H ⊂ L is said to be invariant with respect to

that subalgebra.

We are now ready to present the second method of obtaining equivalent

solutions to the CYBE, Equation (4.1):

Proposition 4.2.3. Let r be a solution of CYBE, Equation (4.1), invariant

with respect to a subalgebra H ⊂ L, and let the tensor r0 ∈ H ⊗H satisfy

[r12
0 , r

13
0 ] + [r12

0 , r
23
0 ] + [r13

0 , r
23
0 ] = 0

r0 = −τ(r0)

then the function r̃ := r + r0 is also a solution to Equation (4.1)

Proof. First, we will calculate the first bracket:

[r12(u1, u2) + r12
0 , r

13(u1, u3) + r13
0 ] = [r12(u1, u2), r13(u1, u3)]

+ [r12(u1, u2), r13
0 ] + [r12

0 , r
13(u1, u3)] + [r12

0 , r
13
0 ].

Similarly, the second bracket can be expanded to

[r12(u1, u2) + r12
0 , r

23(u2, u3) + r23
0 ] = [r12(u1, u2), r23(u2, u3)]

+ [r12(u1, u2), r23
0 ] + [r12

0 , r
23(u2, u3)] + [r12

0 , r
23
0 ]
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and the third bracket can be expanded to

[r13(u1, u3) + r13
0 , r

23(u2, u3) + r23
0 ] = [r13(u1, u3), r23(u2, u3)]

+ [r13(u1, u3), r23
0 ] + [r13

0 , r
23(u2, u3)] + [r13

0 , r
23
0 ].

From the assumptions of the theorem, the first and fourth Lie brackets of

each expansion added together are zero. We are left with

[r12(u1, u2), r13
0 ] + [r12

0 , r
13(u1, u3)] + [r12(u1, u2), r23

0 ] + [r12
0 , r

23(u2, u3)]

+ [r13(u1, u3), r23
0 ] + [r13

0 , r
23(u2, u3)].

This simplifies to

[r12(u1, u2), r13
0 + r23

0 ] + [r13(u1, u3), r23
0 − r12

0 ]− [r23(u2, u3), r12
0 + r13

0 ]

or,

[r12(u1, u2), r13
0 + r23

0 ] + [r13(u1, u3), r23
0 + (τr0)12]− [r23(u2, u3), r12

0 + r13
0 ].

We can calculate,

ϕ2

(
[r12(u1, u2), r13

0 + r23
0 ]
)

=
[
ϕ1

(
r(u1, u2)

)
(x), ϕ1(r0)(y)

]
− ϕ1

(
r(u1, u2)

)[
x, ϕ1(r0)(y)

]
= −

[
ϕ1(r0)(y), ϕ1

(
r(u1, u2)

)
(x)
]

+ ϕ1

(
r(u1, u2)

)[
ϕ1(r0)(y), x

]
= −

(
ad
(
ϕ1(r0)(y)

)
◦ ϕ1

(
r(u1, u2)

))
(x)

+
(
ϕ1

(
r(u1, u2)

)
◦ ad

(
ϕ1(r0)(y)

))
(x)

=
[
ϕ1

(
r(u1, u2)

)
, ad
(
ϕ1(r0)(y)

)]
.

Without loss of generality, we can let r0 = a ⊗ b with a, b ∈ H. Then

ϕ1(r0)(x) = κ(b, x)a is in H for all x ∈ L. The assumption of the Propo-

sition gives, [h ⊗ 1 + 1 ⊗ h, r(u1, u2)] = 0, from the proof of Proposi-

tion 3.2.25 we know that implies that [ϕ1

(
r(u1, u2)

)
, ad(h)] = 0 for all

h ∈ H. Hence, [r12(u1, u2), r13
0 + r23

0 ] = 0. Similarly it can be shown

that [r13(u1, u3), r23
0 + (τr0)12] = 0 and [r23(u2, u3), r12

0 + r13
0 ] = 0

Definition 4.2.4. Solutions where r(u1, u2) = −τ(r(u2, u1)) are known as

unitary solutions.
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By a theorem of Belavin and Drinfeld [5], each nondegenerate solution

r(u, v) to the CYBE, is equivalent to a solution r̃(u1, u2) which depends

only on u1− u2. From now on we will consider only solutions depending on

u1−u2, only after Proposition 5.2.11 will we revert back to the 2 parameter

case. If r depends on the difference, u1 − u2, only, we write r(u1 − u2) for

r(u1, u2) and consider r as a function of one variable. In this case, r(u1, u2)

is denoted by r(u1 − u2) and CYBE, Equation (4.1), can be written as

[r12(u), r13(u+ v)] + [r12(u), r23(v)] + [r13(u+ v), r23(v)] = 0 (4.5)

and such a solution is unitary if and only if r(u) = −τ(r(−u)).

From here on out, unless otherwise stated, we refer to Equation (4.5) as

the CYBE.

4.3 Properties of Constant Solutions to CYBE

In this section we investigate constant solutions to the CYBE. When we

assume that r ≡ r0 ∈ L⊗L, we get the simpler constant coefficient equation

[r12
0 , r

13
0 ] + [r12

0 , r
23
0 ] + [r13

0 , r
23
0 ] = 0. (4.6)

The aim of this section is to show that Equation (4.6) does not have non-

degenerate solutions. Throughout this section we will let T = ϕ1(r0)

Lemma 4.3.1. Let r0 ∈ L⊗ L. Then

1. r0 + τ(r0) = t is equivalent to T + T ∗ = 1L.

2. Equation (4.6) is equivalent to

[T (x), T (y)]− T
(

[x, T (y)]− [T ∗(x), y]

)
= 0. (4.7)

3. If T + T ∗ = 1L, then Equation (4.6) is equivalent to

[T (x), T (y)] = T

(
[x, T (y)] + [T (x), y]− [x, y]

)
. (4.8)

Proof. 1. Because ϕ1 : L ⊗ L → End(L) is an isomorphism and ϕ1(t) =

1L, we obtain r0 + τ(r0) = t if and only if ϕ1(r0) + ϕ1(τ(r0)) = 1L,

From Proposition 3.2.6 this can be written, ϕ1(r0) + ϕ1(r0)∗ = 1L or

T + T ∗ = 1L.
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2. As before, let t be the Casimir element. Using Remark 3.2.16 we can

obtain

[r12
0 , r

13
0 ] = (1L ⊗ T ∗ ⊗ T ∗)[t12, t13],

[r12
0 , r

23
0 ] = (T ⊗ 1L ⊗ T ∗)[t12, t23],

[r13
0 , r

23
0 ] = (T ⊗ T ⊗ 1L)[t13, t23].

Recall from Corollary 3.2.18 that [t12, t13] = −[t12, t13] = [t13, t23]. We

can now apply ϕ2 to Equation (4.6) to find

ϕ2

(
[r12

0 , r
13
0 ] + [r12

0 , r
23
0 ] + [r13

0 , r
23
0 ]
)

= ϕ2

(
(1L ⊗ T ∗ ⊗ T ∗ − T ⊗ 1L ⊗ T ∗ + T ⊗ T ⊗ 1L)([t12, t13])

)
.

(4.9)

We know from Proposition 3.2.14 that ϕ2([t12, t13]) = L. Using this

and the results from Lemma 3.2.5 we can write Equation (4.9) as

= L ◦ (T ⊗ T )− T ◦ L ◦ (1L ⊗ T ) + T ◦ L ◦ (T ∗ ⊗ 1L).

Therefore, Equation (4.6) holds if and only if, for all x, y ∈ L we have

[T (x), T (y)]− T ([x, T (y)]) + T ([T ∗(x), y]) = 0. (4.10)

3. We know from part (2) that Equation (4.6) is equivalent to Equation

(4.7), by assumption we have that T ∗ = 1L − T . So we have,

[T (x), T (y)] = T
(
[x, T (y)] + [T (x), y]− [x, y]

)
.

Proposition 4.3.2. Let the tensor r0 ∈ L⊗ L be nondegenerate with r0 =

−τ(r0). Let S ∈ End(L) be the inverse of T . Then r0 satisfies Equation

(4.6) if and only if S is a derivation of L.

Proof. From Proposition 4.3.1 part (2) we know that r0 being a solution to

Equation (4.6) is equivalent to

[T (x), T (y)]− T [x, T (y)] + T [T ∗(x), y] = 0

for all x, y ∈ L. By definition S = T−1 and because r0 is unitary we have

T ∗ = −T . S is an isomorphism so we can replace x with S(x) and replace

y with S(y) to obtain

[x, y]− T [S(x), y]− T [x, S(y)] = 0
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for all x, y ∈ L. Applying S to this we find

S[x, y]− [S(x), y]− [x, S(y)] = 0

for all x, y ∈ L. That is, S is a derivation.

Proposition 4.3.3. A tensor r0 ∈ L⊗L satisfying the following system of

equations:

r0 + τ(r0) = t, (4.11)

[r12
0 , r

13
0 ] + [r12

0 , r
23
0 ] + [r13

0 , r
23
0 ] = 0. (4.12)

is degenerate.

Proof. From Lemma 4.3.1 we know that Equation (4.11) is equivalent to

T + T ∗ = 1L and Equation (4.12) is equivalent to Equation (4.7). We have

(T − 1)[T (x), T (y)] = T
(
[T (x), T (y)]

)
− [T (x), T (y)]

from Equation (4.7) this is equal to

= T
(
[T (x), T (y)]

)
− T

(
[x, T (y)]

)
+ T

(
[T ∗(x), y]

)
.

From Equation (4.11) we can replace T ∗ with 1L − T to obtain a more

symmetric expression:

= T
(
[T (x), T (y)]

)
− T

(
[x, T (y)]

)
+ T

(
[x, y]

)
− T

(
[T (x), y]

)
= T

(
[T (x), (T − 1L)(y)]

)
− T

(
[x, (T − 1L)(y)]

)
= T

(
[(T − 1L)(x), (T − 1L)(y)]

)
. (4.13)

Assuming that r0 ∈ L⊗ L is nondegenerate, then det(T ) 6= 0. This means

that det(T ∗) 6= 0 and so det(T − 1L) 6= 0. We define θ : L → L by

θ = T ◦ (T −1L)−1. Therefore, θ−1L = T (T −1L)−1−1L = T (T −1L)−1−
(T − 1L)

(
(T − 1L)−1

)
= (T − 1L)−1. If we apply (T − 1L)−1 to Equation

(4.13) we find

[T (x), T (y)] = (T − 1L)−1 ◦ T
(
[(T − 1L)(x), (T − 1L)(y)]

)
. (4.14)

But θ = T ◦ (T − 1L)−1 = (T − 1L)−1 ◦ T and if we let x′ = (T − 1L)(x)

and y′ = (T − 1L)y we can write Equation (4.14) as

[θ(x′), θ(y′)] = θ
(
[x′, y′]

)
.

That is, θ is a Lie algebra automorphism. We know that det((T−1L)−1) 6= 0

and so det(θ − 1L) 6= 0. But Theorem 1.3.17 shows that there is no auto-

morphism θ such that det(θ − 1L) 6= 0. Therefore, if T satisfies Equations

(4.11) and (4.12), then det(T ) = 0, that is, r0 is degenerate.
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We will now show that nondegenerate constant solutions to Equation

(4.6), are automatically unitary.

Proposition 4.3.4. Let r0 ∈ L⊗L be a nondegenerate solution of Equation

(4.6). Then r0 also satisfies

r0 + τ(r0) = 0. (4.15)

Proof. We know that Equation (4.6) holds, and from Lemma 4.3.1 we know

that this is equivalent to Equation (4.7). Interchanging x and y in Equation

(4.7) we obtain for all y, z ∈ L

[T (y), T (x)]− T [y, T (x)] + T [T ∗(y), x] = 0

using the skew-symmetry of the Lie bracket on the above equation we have

− [T (x), T (y)] + T [T (x), y]− T [x, T ∗(y)] = 0. (4.16)

Adding (4.7) and (4.16) we obtain

T ([(T + T ∗)(x), y]) = T ([x, (T + T ∗)(y)]) .

Because T is an isomorphism we have

[(T + T ∗)(x), y] = [x, (T + T ∗)(y)].

For z ∈ L we can apply the map κ(−, z) to this equation to obtain

κ
(
[(T + T ∗)(x), y], z

)
= κ

(
[x, (T + T ∗)(y)], z

)
.

Because the Killing form is associative, and (T + T ∗)∗ = T ∗ + T we have,

κ
(
[(T + T ∗)(x), y], z

)
= κ

(
[x, (T + T ∗)(y)], z

)
κ
(
(T + T ∗)(x), [y, z]

)
= κ

(
x, [(T + T ∗)(y), z]

)
κ
(
x, (T + T ∗)[z, y]

)
= κ

(
x, [z, (T + T ∗)(y)]

)
for all x ∈ L. Therefore,

(T + T ∗)[z, y] = [z, (T + T ∗)(y)]

for all y ∈ L. That is,

(T + T ∗) ◦ ad(z) = ad(z) ◦ (T + T ∗)

or,

[T + T ∗, ad(z)] = 0

for all z ∈ L. From Proposition 3.2.25 this implies that T + T ∗ = λ · 1L
or r + τ(r) = λ · t for some λ ∈ C. If λ 6= 0 from Proposition 4.3.3 this

equation along with Equation (4.6) implies that r ∈ L ⊗ L is degenerate.

Therefore, by the assumptions of the proposition, λ = 0
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Corollary 4.3.5. Let L be a simple Lie algebra. Then Equation (4.6) does

not have nondegenerate solutions.

Proof. Let us assume that r0 ∈ L⊗L is a nondegenerate solution to Equa-

tion (4.6). By Proposition 4.3.4 it is unitary, that is, r0 + τ(r0) = 0. As

r0 is nondegenerate, T is an isomorphism, therefore by Proposition 4.3.2,

S = T−1 is a derivation. As L is simple, Proposition 1.6.13 implies that

there exists a ∈ L such that S = ad(a). But then a ∈ ker(ad(a)) as

[a, a] = 0, hence ad(a) cannot be an isomorphism, and r0 is degenerate.

4.4 Characterisation of Nondegenerate So-

lutions

For a solution r to the CYBE, meromorphic in some disc U ⊆ C and

centred at zero, being nondegenerate implies that it also satisfies three more

equivalent conditions. In this section we aim to prove this equivalence

by reproducing the proof of Belavin and Drinfeld [4] in a coordinate-free

language.

Proposition 4.4.1. Let r be a solution to the CYBE, Equation (4.5), which

is holomorphic in a disc U containing zero and let there exist a u0 ∈ U

such that the tensor r(u0) is nondegenerate. Then the tensor r(0), is also

nondegenerate.

Proof. Setting v = 0 in Equation (4.5), we obtain

[r12(u), r13(u)] + [r12(u) + r13(u), r23(0)] = 0

So,

ϕ2

(
[r12(u), r13(u)]

)
+ ϕ2

(
[r12(u) + r13(u), r23(0)]

)
= 0.

Using Remark 3.2.15 we obtain for all x, y ∈ L[
ϕ1(r(u))(x), ϕ1(r(u))(y)

]
= ϕ1

(
r(u)

)(
[x, ϕ1(r(0))(y)]−[ϕ1(r(0))∗(x), y]

)
.

(4.17)

By the condition of the proposition ϕ1

(
r(u0)

)
is an isomorphism. Therefore

for each u ∈ U , there exists a linear map ψu : L → L such that ψu ◦
ϕ1(r(u0)) = ϕ1(r(u)). For ease of reading we will write X = ϕ1(r(u0))(x)

and Y = ϕ1(r(u0))(y). As ϕ1(r(u0)) is an isomorphism, each X, Y ∈ L can

be written in this form with appropriate x, y ∈ L. We will also write I =
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[x, ϕ1(r(0))(y)]− [ϕ1(r(0))∗(x), y] and letting u = u0 we see that Equation

(4.17) can be written

[X, Y ] = ϕ1(r(u0))(I). (4.18)

Applying ψu to Equation (4.18) we obtain

ψu([X, Y ]) = ψu
(
ϕ1(r(u0))(I)

)
= ϕ1(r(u))(I) = ϕ1(r(u))

(
[x, ϕ1(r(0))(y)]

− [ϕ1(r(0))∗(x), y]
)
.

From Equation (4.17) we find

ψu([X, Y ]) =

[
ϕ1(r(u))(x), ϕ1(r(u))(y)

]
= [ψu(X), ψu(Y )]

for all X, Y ∈ im(ϕ1(r(u0)) = L, u ∈ U . Therefore, ψu is an endomorphism

of L as a Lie algebra. Lemma 1.6.9 then gives that det(ψu) ∈ {0,−1, 1}.
We have ψu = ϕ1(r(u))◦ϕ1(r(u0))−1 and ψu0 = ϕ1(r(u0))◦ϕ1(r(u0))−1 = 1.

Therefore, det(ψu0) = 1. Due to the continuity of r we must have det(ψu) =

1 for any u. In particular detψ0 = 1 and r(0) is nondegenerate.

Proposition 4.4.2. Let A,B ∈ L ⊗ L and let V := im
(
ϕ1(B)

)
. Define

M := {x ∈ L | [x, v] ∈ V for all v ∈ V }. Then

1. M ⊂ L is a Lie subalgebra.

2. if [A12, B23] ∈ L⊗ V ⊗ L then A ∈ L⊗M ,

3. if [B12, A13] ∈ V ⊗ L⊗ L then A ∈M ⊗ L.

Proof. 1. For x, y ∈ M, v ∈ V we have [[x, y], v] = [x, [y, v]] + [y, [v, x]]

due to the Jacobi identity. But [y, v] ∈ V and [v, x] ∈ V so [x, [y, v]]

and [y, [v, x]] are both in V . So their sum is also in V .

2. Define a map τ213(a ⊗ b ⊗ c) = b ⊗ a ⊗ c. Then τ213([A12, B23]) =

[(τA)12, B13] ∈ V ⊗ L ⊗ L. Clearly, for ξ ∈ V ⊗ L ⊗ L we have

ϕ2(ξ) : L ⊗ L → V as ϕ2(a ⊗ b ⊗ c)(x ⊗ y) = κ(b, x)κ(c, y)a. Hence,

for all x, y ∈ L we have ϕ2

(
[(τA)12, B13]

)
(x ⊗ y) ∈ V , that is (using

Remark 3.2.15), [ϕ1(τA)(x), ϕ1(B)(y)] ∈ V for all x, y ∈ L. Now,

V = im(ϕ1(B)) implies B ∈ V ⊗ L. Hence, ϕ1(τA)(x) ∈ M for all

x ∈ L, that is, A ∈ L⊗M as required.

3. Similarly, if [B12, A13] ∈ V ⊗ L⊗ L, then im
(
ϕ2([B12, A13])

)
⊂ V and

again using Remark 3.2.15, for all x, y ∈ L we have [ϕ1(B)(x), ϕ1(A)(y)]

∈ V . As V = im(ϕ1(B)) this means that [ϕ1(A)(y), v] ∈ V for all

v ∈ V , that is ϕ1(A)(y) ∈M for all y ∈ L. Hence, A ∈M ⊗ L.



68 CHAPTER 4. NONDEGENERATE SOLUTIONS TO THE CYBE

Remark 4.4.3. For any subspaces V,W ⊂ L, we have L⊗W∩V ⊗L = V ⊗W .

Proof. Let {v1, . . . , vr} be a basis of V and {w1, . . . , ws} be a basis of

W . We can extend these bases to two different bases for L, say L =

v1, . . . , vr, vr+1, . . . , vn = V ⊕L1 and L = w1, . . . , ws, ws+1, . . . , wn = W⊕L2.

Now we can write

L⊗W = (V ⊕ L1)⊗W ∼= (V ⊗W )⊕ (L1 ⊗W )

V ⊗ L = V ⊗ (W ⊕ L2) ∼= (V ⊗W )⊕ (V ⊗ L2).

So V ⊗W is in the intersection.

We are now ready to formulate a proof for the following theorem, which

was given in [4].

Theorem 4.4.4. Let L be a finite-dimensional simple Lie algebra over C.

Let r be a solution of CYBE in the class of meromorphic functions, defined

in some disk U ⊆ C with centre at zero. Then the following four conditions

are equivalent:

(A) the function r has at least one pole, and there does not exist a neigh-

bourhood U ′ ⊂ U of zero and a Lie subalgebra L1 ⊂ L such that

r(u) ∈ L1 ⊗ L1 for all u ∈ U ′ at which r is holomorphic;

(B) all the poles of r are simple and at u = 0 the residue is of the form

λ · t, λ ∈ C;

(C) r has for u = 0 a simple pole with residue of the form λ · t, λ ∈ C.

(D) r is nondegenerate.

Proof. Recall that L denotes a finite-dimensional simple Lie algebra over

C. We will fix the nondegenerate invariant bilinear form on L to be κ.

(A) ⇒ (B) To prove this, suppose that r has a pole of order k ≥ 1 at u = γ, and

set ρ = limu→γ(u− γ)kr(u). Multiplying both sides of Equation (4.5)

by (v − γ)k we have

(v − γ)k[r12(u), r13(u+ v)]+(v − γ)k[r12(u), r23(v)]

+ (v − γ)k[r13(u+ v), r23(v)] = 0

and taking the limit as v tends to γ, we get

[r12(u), ρ23] + [r13(u+ γ), ρ23] = 0 (4.19)
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for u ∈ U with u + γ ∈ U . In exactly the same way, multiplying by

(u− γ)k and letting u tend to γ in Equation (4.5), we get

[ρ12, r13(v + γ)] + [ρ12, r23(v)] = 0 (4.20)

for v ∈ U with v + γ ∈ U . We will now show from these equations

that [ρ12, ρ13] 6= 0. First, Suppose that V ⊂ L is the smallest vector

space such that ρ ∈ V ⊗ L, that is V = im(ϕ1(ρ)), and set M = {x ∈
L | [x, V ] ⊂ V }. M is a Lie subalgebra. Using Example 3.2.9 part (3)

we obtain [r13(u+ γ), ρ23] ∈ L⊗ V ⊗ L as ρ ∈ V ⊗ L. It follows from

Equation (4.19) that [r12(u), ρ23] ∈ L⊗V ⊗L. From Proposition 4.4.2

part (1) this means that r(u) ∈ L⊗M if u ∈ U and u+ γ ∈ U . From

Example 3.2.9 part (2) we see that [ρ12, r23(v)] ∈ V ⊗ L ⊗ L, hence

from Equation (4.20) we have [ρ12, r13(v + γ)] ∈ V ⊗ L ⊗ L. Using

Proposition 4.4.2 part (2) we have r(v + γ) ∈ M ⊗ L if v ∈ U and

v + γ ∈ U .

For some small disc U ′ ⊂ U centred at zero we must have u′, u′+γ and

u′ − γ ∈ U , therefore, for all u ∈ U ′ we have r(u) ∈ L⊗M ∩M ⊗ L.

From Remark 4.4.3 we have r(u) ∈ M ⊗M . By the assumptions of

(A) we must have M = L, that is, [L, V ] ⊂ V . This implies that V

is an ideal in L. But L is simple, and so V = im(ϕ1(ρ)) = L (that

is, ϕ1(ρ) is surjective, hence ρ is nondegenerate). From Lemma 3.2.23

we conclude that [ρ12, ρ13] cannot be equal to zero.

It follows from this that the function r has, for u = 0, a pole of

order not less than k: otherwise, multiplying Equation (4.20) by vk

and letting v tend to 0, we would have [ρ12, ρ13] = 0. It remains to

prove that the order of the pole of r for u = 0 does not exceed one and

limu→0 u·r(u) = λt. Setting γ = 0, let θ = ρ, that is θ = limu→0 u
`r(u)

with ` being the order of the pole at zero, therefore from what we have

shown above, [θ12, θ13] 6= 0. Suppose

r(u) =
θ

u`
+

A

u`−1
+

∞∑
i=2−`

Xiu
i, θ 6= 0.

If ` ≥ 1, then fixing v close to zero such that r(u) has no pole at u = v

we find

r(u+ v) =
∑
i≥0

fi(v)ui

(or r(u) =
∑

i≥0 fi(v)(u−v)i by Taylors Theorem). With f0(v) = r(v),

and f1(v) = dr(u)
du

∣∣∣
u=v

. Now fixing v and treating u as a variable
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in Equation (4.5) we wish to compare the coefficient of u`−1 in the

Laurent series at the point u = 0 of the left side of Equation (4.5).

To obtain this we need[
r12(u), r13(u+ v)

]
+

[
r13(u+ v), r23(v)

]
+

[
r12(u), r23(v)

]
=[

1

u`
θ12 +

1

u`−1
A12 + · · · , f0(v)13 + f1(v)13u+ · · ·

]
+

[
f0(v)13 + f1(v)13u+ · · · , f 23

0 (v)

]
+

[
1

u`
θ12 +

1

u`−1
A12 + · · · , f 23

0 (v)

]
.

The expression on the right-hand side of this equation can be written

as

1

u`

[
θ12, f0(v)13 + f0(v)23

]
+

1

u`−1

([
A12, f0(v)13 + f0(v)23

]
+

[
θ12, f1(v)13

])
+ · · ·

If ` > 1 we have `− 1 ≥ 1, therefore,[
A12, f0(v)13 + f0(v)23

]
+
[
θ12, f1(v)13

]
= 0. (4.21)

Multiplying Equation (4.21) by v`+1 and taking the limit of this new

equation as v → 0 we obtain with

f0(v) = r(v) =
1

v`
θ +

1

v`−1
A+ · · ·

f1(v) =
dr(u)

du

∣∣∣∣
u=v

=
−`
v`+1

θ +
−(`− 1)

v`
A+ · · ·

that

lim
v→0

v`+1f0(v) = lim
v→0

(vθ + v2A+ . . .) = 0

and

lim
v→0

v`+1f1(v) = lim
v→0

(−`θ − (`− 1)vA+ . . .) = −`θ

that is, [θ12, θ13] = 0, which contradicts what we have proved in the

above paragraph. Thus, ` = 1. As we have shown, ` ≥ k, this implies

that k = 1 also.

We now need to show that θ from the previous paragraph is a multiple

of t. From the conditions of part (A) of the theorem we know that
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there does not exist a disc U ′ ⊂ U around zero such that there is a

Lie subalgebra L1 ⊂ L with r(u) ∈ L1⊗L1 for all u ∈ U ′ at which r is

holomorphic. From Equations (4.19) and (4.20) with γ = 0 we have,

for all u ∈ U ,

[r12(u) + r13(u), θ23] = 0 (4.22)

[θ12, r13(u) + r23(u)] = 0. (4.23)

We define the cyclic permutation operator τ231 by τ231(a ⊗ b ⊗ c) =

b⊗ c⊗ a. We obtain from Equation (4.22)

τ231

(
[r12(u) + r13(u), θ23]

)
= [(τr)13(u) + (τr)23(u), θ12] = 0. (4.24)

(Note that this is a version of Equation (4.23) with r replaced by

τ(r)). Now, let L1 := {z ∈ L | [ad(z), ϕ1(θ)] = 0}, that is, z ∈ L1

if and only if for all x ∈ L we have [z, ϕ1(θ)(x)] − ϕ1(θ)
(
[z, x]

)
= 0.

From Proposition 3.2.12 and Remark 3.2.15 we obtain from Equation

(4.23), for all x, y ∈ L where A = r(u):

ϕ2

(
[θ12, A13 + A23]

)
(x⊗ y) = [ϕ1(θ)(x), ϕ1(A)(y)]

− ϕ1(θ)
(
[x, ϕ1(A)(y)]

)
= 0.

Hence, ϕ1(A)(y) ∈ L1 for all y ∈ L. This means that im(ϕ1(A)) ⊂ L1

and hence A = r(u) ∈ L1 ⊗ L. From Equation (4.24) we obtain

(τ(r))(u) ∈ L1⊗L, or r(u) ∈ L⊗L1. Hence, r(u) ∈ L1⊗L1 for all u ∈
U . By assumption this implies that L1 = L, hence, [ad(z), ϕ1(θ)] = 0

for all z ∈ L, that is, ϕ1(θ) ∈ C1L. From Lemma 1.3.16 it follows

that θ is proportional to t.

(B) ⇒ (C) (C) follows trivially from (B).

(C) ⇒ (D) Let us assume that r has a simple pole at u = 0 with residue λt,

λ ∈ C. This means that limu→0 u · r(u) = λt and λ 6= 0. As ϕ1 is

linear, λ1L = ϕ1(λt) = limu→0 u · ϕ1(r(u)). Hence, for nonzero λ,

det(λ1L) 6= 0 and so det(λ1L) = limu→0 det
(
u · ϕ1(r(u))

)
. Moreover,

as r is continuous, for u 6= 0 sufficiently small, det
(
ϕ1(r(u))

)
6= 0.

Therefore, from Remark 3.2.22, r is nondegenerate.

(D) ⇒ (A) In order to show this we will prove that there does not exist a non-

degenerate solution r to Equation (4.5) which is holomorphic in U .

First let us assume that r is holomorphic in U and that there exists

a u0 ∈ U such that r(u0) is nondegenerate. Then from Proposition
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4.4.1 we know that the tensor r(0) is also nondegenerate. It is clear

that if r is a solution of Equation (4.5), holomorphic for u = 0, then

the r(0), a constant not depending on u, satisfies the relation (4.6).

From Corollary 4.3.5 r(0) is degenerate and so for nondegenerate r, r

must have at least one pole.

In order to prove the second part of condition (A) we will assume that

there exists a subalgebra L1 ⊂ L and an open set U ′ ⊂ U containing

the origin such that r(u) ∈ L1 ⊗ L1 for all u ∈ U ′ at which r is holo-

morphic. Then im
(
ϕ1(r(u))

)
⊂ L1 for all u ∈ U ′. If L1 6= L then r(u)

is degenerate on U ′ as this would mean that ϕ1(r(u)) is not an isomor-

phism. But as r is nondegenerate, by Remark 3.2.22 det
(
ϕ1(r(u))

)
is not identically zero on U , and in particular, det

(
ϕ1(r(u))

)
is not

identically zero on U ′. Therefore we must have L1 = L.

4.5 Properties of Nondegenerate Solutions

We will now focus on some general properties of nondegenerate solutions

to the CYBE. We show that these functions are not only meromorphic on

a disc contained in C, but are meromorphic on the entire complex plane.

We will also look at the set of poles, Γ, of the function r. Throughout this

section we will assume that limu→0 u · r(u) = t.

Proposition 4.5.1. Let r be a nondegenerate solution to the CYBE, mero-

morphic on a disc u ⊂ C. Then r(u+ v) is a rational function of r(u) and

r(v) for all u, v, u+ v ∈ U .

Proof. We know that

[r12(u), r13(u+ v)] + [r12(u), r23(v)] + [r13(u+ v), r23(v)] = 0.

Let {Iµ} be a basis of L and using the identities r(u) =
∑

µ,ν rµν(u)Iµ ⊗ Iν
and [Ir, Is] =

∑
λ a

λ
rsIλ we can see that Equation (4.5) holds if and only if∑

α,β

rαk(u)rβ`(u+ v)ajαβ +
∑
µ,ν

rjµ(u)rν`(v)akµν+∑
σ,ρ

rjσ(u+ v)rkρ(v)a`σρ = 0 (4.25)
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for all j, k, ` ∈ {1, . . . , n}. If r(u) and r(v) are known, we let∑
µ,ν rjµ(u)rν`(v)akµν = −D where D depends on j, k, ` ∈ {1, . . . , n}, and

we can write Equation (4.25) as∑
α,β

Djk`
βρ rβρ(u+ v) = D

for all j, k, ` ∈ {1, . . . , n} where D and Dαβ depend linearly on all the rαk(u)

and rkρ(v). That is, Equation (4.5) is an inhomogeneous system of linear

equations in the elements of the tensor r(u + v) with n3 equations and n2

unknowns. A solution to such a system is expressed as a rational function

of the coefficients if the associated homogeneous system in nondegenerate,

that is, it has only the trivial solution. In our case, the homogeneous system

is

[r12(u)− r23(v), Z13] = 0. (4.26)

If u 6= 0 is sufficiently small, then for u = v Equation (4.26) is equivalent to

[u · r12(u)− u · r23(u), Z13] = 0. (4.27)

Taking the limit as u approaches zero Equation (4.27) takes the form

[t12 − t23, Z13] = 0. (4.28)

We need to show that this equation is only true when Z = 0. It will then

follow that for small u, Equation (4.27) is true only for Z = 0.

Applying ϕ2 to Equation (4.28) we have, for all x, y ∈ L[
ϕ1(t)(x), ϕ1(Z)(y)

]
+ ϕ1(Z)

[
ϕ1(t)∗(x), y

]
= 0.

Because ϕ1(t) = ϕ1(t)∗ = 1L we have,[
x, ϕ1(Z)(y)

]
+ ϕ1(Z)

[
x, y
]

= 0 (4.29)

that is, (
ad(x) ◦ ϕ1(Z)

)
(y) +

(
ϕ1(Z) ◦ ad(x)

)
(y) = 0.

Because − ad(x) = ad(x)∗ we can write this as(
ad(x) ◦ ϕ1(Z)

)
(y)−

(
ϕ1(Z) ◦ ad(x)∗

)
(y) = 0.

Using Lemma 3.2.4 we can write this as

ϕ1

(
(ad(x)⊗ 1L − 1L ⊗ ad(x))(Z)

)
= 0
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or,

ϕ1

(
[x⊗ 1− 1⊗ x, Z]

)
= 0 (4.30)

for all x ∈ L. Direct computation gives
[
[x, y]⊗1+1⊗ [x, y], Z

]
=
[
[x⊗1−

1⊗ x, y ⊗ 1− 1⊗ y], Z
]
, and from Equation (4.30) and the Jacobi identity

it follows that [
[x⊗ 1− 1⊗ x, y ⊗ 1− 1⊗ y], Z

]
= 0 (4.31)

for any x, y ∈ L. Since elements of the form [x, y], because of the simplicity

of L, generate L as a vector space, it follows from Equation (4.31) that

[x ⊗ 1 + 1 ⊗ x, Z] = 0 for all x ∈ L. (From Equation (4.30) we see that

ϕ1([x ⊗ 1, Z]) = ϕ1([1 ⊗ x, Z]) so we have [x ⊗ 1, Z]) = 0, that is, ad(x) ◦
ϕ1(Z) = 0). From Proposition 3.2.25 this means that Z = λt, λ ∈ C From

Equation (4.29) we can now write [x, λ · y] + λ[x, y] = 0 or 2λ[x, y] = 0. As

L is simple, λ = 0 and consequently Z = 0. Therefore, r(u) is a solution

to the CYBE if and only if the equation r(u + v) = R(r(u), r(v)) holds

for some rational function R and for all (u, v) ∈ Ũ = {(u, v) ∈ C2 |, u ∈
U, v ∈ U, u + v ∈ U} ⊂ C2. This means that the meromorphic function

F (u, v) = r(u + v) − R(r(u), r(v)), which is defined on an open subset

V ⊂ C2, vanishes identically on Ũ . The Identity Theorem, (Remark 3.1.9),

implies that F ≡ 0 on V .

Corollary 4.5.2. r(u− v) is a rational function of r(u) and r(v).

Proof. We know from Theorem 4.5.1 that r(u+ v) = R(r(u), r(v)) and as r

is unitary we have r(u−v) = R(r(u),−τ(r(v))). But the map −τ : L⊗L→
L⊗ L is linear, so r(u− v) is also a rational function of r(u) and r(v).

Corollary 4.5.3. Let r be a nondegenerate solution to the CYBE defined

on a disc U with centre zero. Then r extends meromorphically to the whole

complex plane C.

Proof. We know that r is defined on a disc U = D(0, ρ) ⊂ C. If r does

not extend mermorphically to C, there exists ε > 0 and ρ1 ≥ ρ > ε such

that r extends to D(0, ρ1) but not to D(0, ρ1 + ε). If we let Y (u, v) =

[r12(u), r13(u + v)] + [r12(u), r23(v)] + [r13(u + v), r23(v)], then Y (u, v) ≡ 0

on D(0, ρ) ⊂ D(0, ρ1), therefore, from the Identity Theorem, Y (u, v) ≡ 0

on Ṽ (ρ1) and so r satisfies the CYBE in D(0, ρ1). By Proposition 4.5.1

there is a rational function R such that r(u + v) = R(r(u), r(v)) for all

u, v ∈ D(0, ρ1) with u+ v ∈ D(0, ρ1).
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We now fix v ∈ D(0, ε) ⊂ D(0, ρ1) and define a meromorphic function f

on D(v, ρ1) by f(u + v) = R(r(u), r(v)). That is, f(u) = R(r(u− v), r(v))

for all u ∈ D(v, ρ1). This means that for all u ∈ D(v, ρ1) ∩ D(0, ρ1), we

have f(u) = r(u), that is, f(u) extends r(u) to D(v, ρ1) ∪ D(0, ρ1). If we

vary v we can extend r(u) to
⋃
D(v, ρ1) = D(0, ρ1 + ε) which contradicts

our assumption. Hence, r(u) extends meromorphically to C.

Proposition 4.5.4. Let r be a nondegenerate solution to the CYBE, mero-

morphic on C. Let Γ denote the set of poles of r and let γ ∈ Γ. Then there

exists an Aγ ∈ Aut(L) such that

r(u+ γ) = (Aγ ⊗ 1L)r(u) (4.32)

for all u ∈ C.

Proof. Again, set ρ = limu→γ(u− γ)r(u). Let Aγ := ϕ1(ρ) ∈ End(L). From

Lemma 3.2.4 we obtain,

(Aγ ⊗ 1L)(t) = (1L ⊗ A∗γ)(t) = ρ.

As all the poles are simple, we can multiply Equation (4.5) by (u− γ) and

take its limit as u→ γ:

[ρ12, r13(v + γ)] + [ρ12, r23(v)] = 0 (4.33)

for all v ∈ C. Multiplying by v and taking the limit as v → 0 we find,

[ρ12, ρ13] + [ρ12, t23] = 0. (4.34)

We have,

[ρ12, ρ13] =

[(
(1L ⊗ A∗γ)t

)12
,
(
(1L ⊗ A∗γ)t

)13
]

=

[
(1L ⊗ A∗γ ⊗ 1L)t12, (1L ⊗ 1L ⊗ A∗γ)t13

]
= (1L ⊗ A∗γ ⊗ A∗γ)[t12, t13]

and also,

[ρ12, t23] =

[(
(Aγ ⊗ 1L)t

)12
, t23

]
= (Aγ ⊗ 1L ⊗ 1L)[t12, t23]

= −(Aγ ⊗ 1L ⊗ 1L)[t12, t13].
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Therefore, Equation (4.34) is equivalent to

(Aγ ⊗ 1L ⊗ 1L)[t12, t13] = (1L ⊗ A∗γ ⊗ A∗γ)[t12, t13].

Applying ϕ2 to this equation and using Lemma 3.2.5 we find,

Aγ ◦ ϕ1([t12, t13])(x⊗ y) = ϕ2([t12, t13]) ◦ (Aγ(x)⊗ Aγ(y)). (4.35)

From Proposition 3.2.14 we know that ϕ2

(
[t12, t13]

)
= L, the Lie bracket,

so Equation (4.35) can be written

Aγ[x, y] = [Aγ(x), Aγ(y)]

that is, Aγ : L → L is a Lie algebra homomorphism, and Aγ 6= 0 as ρ 6= 0

(γ is a pole of order 1). Because L is simple and ker(Aγ) ⊂ L is an ideal,

Aγ is an automorphism.

From Equation (4.33) we have [ρ12, r13(v + γ)] = −[ρ12, r23(v)] for all

v ∈ C. But ρ12 = (Aγ ⊗ 1L ⊗ 1L)t12 so we can write, [ρ12, r13(v + γ)] =

−(Aγ ⊗ 1L ⊗ 1L)[t12, r23(v)]. Using the identity [t12, r13(v)] = −[t12, r23(v)]

(Corollary 3.2.17) we obtain [(Aγ ⊗ 1L ⊗ 1L)t12, r13(v + γ)] − (Aγ ⊗ 1L ⊗
1L)[t12, r13(v)] = 0. Applying (A−1

γ ⊗ 1L ⊗ 1L) to this equation and using

the fact that Aγ is a Lie algebra homomorphism we obtain

[t12,
(
(A−1

γ ⊗ 1L)r(v + γ)
)13

]− [t12, r13(v)] = 0

or, [
t12,
(
r(v)− (A−1

γ ⊗ 1L)r(v + γ)
)13]

= 0. (4.36)

From Remark 3.2.19 we know that this implies

r(v) = (A−1
γ ⊗ 1L)r(v + γ)

that is,

r(v + γ) = (Aγ ⊗ 1L)r(v).

Proposition 4.5.5. Let r be a nondegenerate solution of the CYBE mero-

morphic on C. Then r satisfies the unitary condition r(u) = −τ(r(−u)).

Proof. We have, for all u1, u2, u3 ∈ C:

[r12(u1 − u2), r13(u1 − u3)] + [r12(u1 − u2), r23(u2 − u3)]

+ [r13(u1 − u3), r23(u2 − u3)] = 0. (4.37)
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Applying the map τ213 defined earlier and interchanging u1 and u2 we get

[(τ(r))12(u2 − u1), r23(u2 − u3)] + [(τ(r))12(u2 − u1), r13(u1 − u3)]

+ [r23(u2 − u3), r13(u1 − u3)] = 0 (4.38)

adding Equations (4.37) and (4.38) we obtain

[r12(u1 − u2), r13(u1 − u3)] + [r12(u1 − u2), r23(u2 − u3)]

+ [r13(u1 − u3), r23(u2 − u3)] + [(τ(r(u2 − u1))12, r23(u2 − u3)]

+ [τ(r(u2 − u1))12, r13(u1 − u3)] + [r23(u2 − u3), r13(u1 − u3)] = 0.

Simplifying we obtain

[r12(u1 − u2) + τ(r(u2 − u1))12, r13(u1 − u3) + r23(u2 − u3)] = 0.

We now fix u1 and u2, multiply by (u2 − u3) and take the limit as u3

approaches u2,

[r12(u1 − u2) + τ(r(u2 − u1))12, t23] = 0.

Now, letting X = r(u1 − u2) + τ(r(u2 − u1)) we have [X12, t23] = 0. From

Remark 3.2.19 this means that X = 0. Thus, we have proved that

r(u1 − u2) + τ(r(u2 − u1)) = 0 (4.39)

that is,

r(u) = −τ(r(−u)) (4.40)

for all u ∈ C.

Proposition 4.5.6. Let r be a nondegenerate solution of the CYBE mero-

morphic in C. Let Γ denote the set of poles of r with γ ∈ Γ and let

Aγ ∈ Aut(L) such that Equation (4.32) holds. Then,

1. Γ is a discrete subgroup relative to the addition of C

2. Aγ1+γ2 = Aγ1 ◦ Aγ2 for any γ1, γ2 ∈ Γ,

3. A∗γ = A−γ = A−1
γ ,

4. r(u+ γ) = (1⊗ A−1
γ )r(u),

5. (Aγ ⊗ Aγ)r(u) = r(u).
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Proof. 1. In order to show that Γ is a discrete subgroup, we need only

show that it is an additive subgroup as poles of a meromorphic func-

tion are discrete. Let γ, γ′ ∈ Γ. The function r has a pole at u = γ′,

hence (Aγ ⊗ 1)r(u) has a pole at u = γ′. From Equation (4.32) it

follows that r(u+ γ) has a pole at u = γ′. That is, γ + γ′ ∈ Γ. Since

r satisfies the unitary condition, we have −γ ∈ Γ, and thus Γ is an

additive subgroup.

2. From Theorem 4.5.4 we have (Aγ ⊗ 1)r(u) = r(u + γ) for all γ ∈ Γ.

This means in particular, (Aγ1 ⊗ 1)r(u) = r(u+ γ1). Hence,

lim
u→γ2

(Aγ1 ⊗ 1)(u− γ2)r(u) = lim
u→γ2

(u− γ2)r(u+ γ1)

= lim
u+γ1→γ1+γ2

(u+ γ1 − (γ1 + γ2))r(u+ γ1).

That is,

(Aγ1 ⊗ 1)ργ2 = ργ1+γ2 . (4.41)

If we let γ1 = γ and γ2 = 0 in Equation (4.41) we find ργ = (Aγ⊗1)ρ0

and as ρ0 = t, ργ = (Aγ ⊗ 1)t. Therefore, we can write Equation

(4.41) as

(Aγ1 ⊗ 1) ◦ (Aγ2 ⊗ 1)t = (Aγ1+γ2 ⊗ 1)t(
(Aγ1 ◦ Aγ2)⊗ 1

)
t = (Aγ1+γ2 ⊗ 1)t.

Applying ϕ1 to both sides of this equation and using Proposition 3.2.4

we obtain Aγ1 ◦ Aγ2 = Aγ1+γ2 as desired.

3. As before, we will let ργ = limu→γ(u− γ)r(u). We then have

τ(ργ) = lim
u→γ

(u− γ)τ(r(u)).

From Proposition 4.5.5 we know that r is unitary therefore,

τ(ργ) = − lim
u→γ

(u− γ)r(−u)

letting v = −u we have,

τ(ργ) = lim
v→−γ

(v + γ)r(v) = ρ−γ.

Hence, A∗γ = ϕ1(τ(ργ)) = ϕ1(ρ−γ) = A−γ. Now, from ρ0 = limu→0 u ·
r(u) = t and the definition of Aγ we have A0 = ϕ1(ρ0) = ϕ1(t) = 1L.

From part (1) above we have Aγ ◦A−γ = 1L. That is, A−γ = A−1
γ for

all γ ∈ Γ.
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4. Using Equation (4.32) with u := −v − γ we obtain r(−v) = (Aγ ⊗
1L)(r(−v− γ)), that is −r(−v) = (Aγ ⊗ 1L)(−r(−(v+ γ))). Because

r is unitary, we can write this as τ(r(v)) = (Aγ ⊗ 1L)τ(r(v + γ)) or

τ
(
(1⊗Aγ)r(v+ γ)

)
= τ(r(u)) which gives us (1⊗Aγ)r(u+ γ) = r(u)

or, r(u+ γ) = (1⊗ A−1
γ )r(u).

5. (Aγ ⊗Aγ)r(u) = (1⊗Aγ) ◦ (Aγ ⊗ 1L)r(u) = (1⊗Aγ)r(u+ γ) = r(u).





Chapter 5

Rational, Trigonometric and

Elliptic Solutions to the CYBE

In 1982, A.A. Belavin and V.G. Drinfeld suceeded in catagorising solutions

r to the CYBE meromorphic in a neighbourhood U of the origin and pos-

sessing an additional nondegeneracy property [4]. They found that, up to

equivalence, these solutions fell into one of three types: elliptic, rational, or

trigonometric, depending on the rank of the set of poles Γ. In this chapter,

we reformulate their proof of this theorem, and then briefly look at each so-

lution type. Throughout this chapter we assume that r is a nondegenerate

solution to the CYBE, meromorphic on C, and that t = limu→0 u · r(u).

5.1 Elliptic Solutions

Recall from the complex analysis preliminaries the definition of an elliptic

function (Definition 3.1.14). We wish to show that if Γ has rank 2, then r

is an elliptic function. First we need the following Lemma:

Lemma 5.1.1. Let H ⊂ Aut(L) be an infinite abelian subgroup. Then there

exists a nonzero a ∈ L such that h(a) = a for any h ∈ H.

Proof. For a proof see [6] Theorem 9.1.

Proposition 5.1.2. Let Γ have rank 2. Then

1. There is no nonzero a ∈ L such that Aγ(a) = a for any γ ∈ Γ,

81
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2. there is an n such that Anγ = 1L for γ ∈ Γ.

Proof. 1. Assume that a ∈ L, a 6= 0, Aγ(a) = a for γ ∈ Γ. De-

fine the linear map φ : C → L by φ(u) = ϕ1

(
τ(r(u))

)
(a). Then

φ(u + γ) = ϕ1

(
τ(r(u + γ))

)
(a). However, from Proposition 4.5.4 we

have r(u + γ) = (Aγ ⊗ 1L)r(u) so τ(r(u + γ)) = (1L ⊗ Aγ)τ(r(u)).

Using Proposition 3.2.4 we can write this as ϕ1

(
τ(r(u + γ))

)
(a) =

ϕ1

(
τ(r(u))

)
◦ A∗γ. From Proposition 4.5.6 part (3) we know that

A∗γ = A−1
γ and as Aγ(a) = a we obtain A−1

γ (a) = a. Hence, ϕ1

(
τ(r(u+

γ))
)
(a) = ϕ1

(
τ(r(u))

)
(a), that is, the function φ is periodic for shifts

by γ ∈ Γ. Because r(u) has a simple pole at u = 0, then φ(u) also

has a simple pole at u = 0 and has no other poles in the period paral-

lelogram α + Π. By the Residue Theorem, Theorem 3.1.13, the sum

of the residues of φ(u) = 1
2πi

∫
C
φ(u)du which is equal to Res(φ, 0).

But the integrals over opposite sides of α + Π cancel (since φ is the

same at congruent points and du introduces a minus sign on one of

the two matching sides), and so the integral is zero. This contradicts

our assumption and so proves assertion (1), there does not exist an

a ∈ L such that Aγ(a) = a for any γ ∈ Γ.

2. Let H be the abelian subgroup generated by Aγ, H = {Aγ | γ ∈ Γ}.
From part (1) we know that there does not exist a nonzero a ∈ L such

that Aγ(a) = a for any γ ∈ Γ. Hence, from Lemma 5.1.1, H is a finite

group and so must have finite order. This implies that there exists an

integer n such that Anγ = 1L.

Corollary 5.1.3. If the rank of Γ is 2, then r is an elliptic function.

Proof. From Proposition 4.5.4 we know that (Aγ⊗1L)(r(u)) = r(u+γ) for

all u ∈ C and for all γ ∈ Γ. Then (Anγ⊗1L)(r(u)) = r(u+nγ). For γ1, γ2 ∈ Γ

we have An1
γ1

= 1L and An2
γ2

= 1L so we must have r(u) = r(u + n1γ1) and

r(u) = r(u+ n2γ2) for all u ∈ C.

In [4] it was shown that finding the nondegenerate elliptic solutions to

the CYBE reduces to describing triples (L,A1, A2), where L is a simple Lie

algebra, A1 and A2 are commuting automorphisms of L of finite order, hot

having fixed nonzero vectors.

Proposition 5.1.4. Let A1 and A2 be commuting automorphisms of L,

where there does not exist a nonzero x ∈ L such that A1(x) = A2(x) = x.

Then L ∼= sl(n).
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Proof. For a proof see [6] Theorem 9.3.

As a consequence of Proposition 5.1.4, elliptic solutions exist only for

L = sl(n). All nondegenerate elliptic solutions can be found in [3].

5.2 Rational and Trigonometric Solutions

In order to give Belavin and Drinfeld’s proof of the classification of rational

and trigonometric solutions, we need to remind the notion of quasi-Abelian

functions, and the addition theorem of Myrberg. We then show that if Γ

has rank 0, then r is equivalent to a solution which is a rational function

of u, and if Γ has rank 1, then r is equivalent to a solution of the form

f(eku) ⊂ L⊗ L.

Remark 5.2.1. A function of n complex variables is said to be Abelian if it is

meromorphic in the complex space Cn and has 2n periods that are linearly

independent over the field of real numbers

An Abelian function is a generalisation of the concept of an elliptic

function of one complex variable, to the case of several complex variables.

Definition 5.2.2. A meromorphic function X on an n-dimensional complex

vector space W is called quasi-Abelian if there exists a coordinate system

z1, . . . , zn in the space W , integers a, b, c ≥ 0, a + b + c = n and vectors

γ1, . . . , γ2c ∈ W such that

1. for fixed za+b+1, . . . , zn, X(z1, . . . , zn) is a rational function of z1, . . . , za,

eza+1 , . . . , eza+b ;

2. the vectors γi are periods of X;

3. the vectors γ̄i ∈ Cc, formed by the last c coordinates of the vectors γi,

are linearly independent over R.

Remark 5.2.3. The quasiabelian functions include the abelian functions and

degenerate forms of them. For n = 1, there are three types of quasi-Abelian

functions: elliptic (a = b = 0, c = 1); rational (a = 1, b = c = 0) and

rational on ez (a = c = 0, b = 1).

Theorem 5.2.4 (Myrberg’s Theorem). Let f(u) be a meromorphic vector-

valued function of one complex variable with values in Cm satisfying

f(u+ v) = P (f(u), f(v))

f(u− v) = Q(f(u), f(v))
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where P and Q are rational functions. Then there exists a natural number

n, a vector a ∈ Cn and a quasi-Abelian function F̄ of n variables such that

1. f(u) = F̄ (ua)

2. the identities

F̄ (x + y) = P (F̄ (x), F̄ (y))

F̄ (x− y) = Q(F̄ (x), F̄ (y))

are satisfied.

Proof. For a proof see [18] and [6] Theorem 11.1.

Myrberg’s theorem generalises the theorem of Weierstrass on functions

satisfying an algebraic addition theorem to the case of vector-valued func-

tions. The classical Weierstrass theorem asserts that, if a function f is

meromorphic over the whole complex plane, and satisfies the functional

equation

P (f(u), f(v), f(u+ v)) = 0

where P is a nonzero polynomial, then the function f is either elliptic,

rational, or trigonometric.

From Theorem 4.5.1 and Corollary 4.5.2 we can use Myrberg’s theorem

to show that there exists an n > 0, a quasi-Abelian function on n variables

X : Cn → L ⊗ L and a vector a ∈ Cn such that r(u) = X(ua). Moreover,

we can choose X so as to satisfy the CYBE, that is,

[X12(u), X13(u + z)] + [X12(u), X23(z)] + [X13(u + z), X23(z)] = 0 (5.1)

with u, z ∈ Cn.

Proposition 5.2.5. Let X(z) = Y (z)/f(z) for holomorphic functions Y :

U → L⊗ L and f : U → C. Without loss of generality we can assume that

S := {z ∈ Cn | f(z) = 0, Y (z) 6= 0} is not empty. Suppose that h ∈ S, that

is, h is a pole of X. Then there exists Φ(h) ∈ Aut(L) and c(h) ∈ C \ {0}
such that

Y (h) = (c(h)Φ(h)⊗ 1L)(t), (5.2)

X(z + h) = (Φ(h)⊗ 1L)X(z), z ∈ Cn (5.3)
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Proof. Let X be chosen so that Equation (5.1) holds. Multiplying this

equation by f(u) we have

[Y 12(u), X13(u + z)] + [Y 12(u), X23(z)] + f(u)[X13(u + z), X23(z)] = 0

and taking this equation to its limit as u→ h,

[Y 12(h), X13(h + z)] + [Y 12(h), X23(z)] = 0

for all z ∈ Cn. If we apply the linear map ϕ2 to this equation we obtain[
ϕ1

(
Y (h)

)
(x), ϕ1

(
X(h + z)

)
(y)
]
− ϕ1

(
Y (h)

)[
x, ϕ1

(
X(z)

)
(y)
]

= 0.

For the sake of brevity, we will write Tz for ϕ1(X(z)) and Th+z for ϕ1(X(h+

z)). Therefore, we can write

[ϕ1(Y (h))(x), Th+z(y)]− ϕ1(Y (h))[x, Tz] = 0.

As Y (h) ∈ L⊗ L, we can use Proposition 3.2.11 to obtain

ϕ1

(
[Y (h), Tz+h(y)⊗ 1]

)
(x) + ϕ1

(
[Y (h), 1⊗ Tz(y)]

)
(x) = 0.

Because ϕ1 is an isomorphism, this implies that

[Y (h), Tz+h ⊗ 1 + 1⊗ Tz(y)] = 0 (5.4)

for all y ∈ L. Let W = {z ∈ Cn |X holomorphic at z and z +h;X(z), X(z

+ h) are nondegenerate} and suppose that z ∈ W . Let ` ⊂ L ⊕ L be

the subgroup generated by (Tz+h(y), Tz(y)), y ∈ L. Then the projections

π1,2 : ` → L are surjective. We have ker(π2) = {(x, y) | (x, y) ∈ `, y = 0} =

{(x, 0) ∈ `} ⊂ L⊕0 = L. As L is simple, ker(π2) = 0 or L. If ker(π2) = L we

have dim ` = dimL+ dimL as π2 is surjective. Hence, dim ` = dim(L⊕L),

that is, ` = L⊕L. By assumption, this is not possible. Therefore, we must

have ker(π2) = 0, that is, π2 is an isomorphism of Lie algebras. Hence there

exists a Lie algebra automorphism Φ(h, z) = π1◦π−1
2 : L→ L, for all z ∈ W

with h ∈ S. We know that for (x, y) ∈ `, x = π1(x, y) and (x, y) = π−1
2 (y).

Therefore, π1(π−1
2 (y)) = x = Φ(y). So ` = {

(
Φ(h, z)(y), y

)
| y ∈ L}. From

Equation (5.4) we now have [Y (h),Φ(h, z)Tz(y) ⊗ 1 + 1 ⊗ Tz(y)] = 0 and

from Proposition 3.2.10 we can write this as [(Φ(h, z)−1⊗1)(Y (h)), Tz(y)⊗
1 + 1 ⊗ Tz(y)] = 0, with Tz(y) ∈ L. Using Proposition 3.2.25 this implies

that (Φ(h, z)−1 ⊗ 1L)(Y (h)) = c(h, z) · t with c(h, z) ∈ C\{0}. Hence,

Y (h) = c(h, z)(Φ(h, z)⊗ 1L)(t) (5.5)
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From Remark 3.2.16, ϕ1(Y (h)) = c(h, z)Φ(h, z). As Φ(h, z) is an isomor-

phism of Lie algebras, then Φ(h, z)[x, y] = [Φ(h, z)(x),Φ(h, z)(y)]. This

holds only when c(h, z) = 1, and so c(h, z) and Φ(h, z) are in fact indepen-

dent of z and Equation (5.2) is satisfied.

We know from above that x = Φ(y) so Tz+h = Φ(h)Tz for all z ∈ W

with h ∈ S. This holds for z ∈ Cn due to analytic continuation. So,

ϕ1(X(h + z)) = Φ(h) ◦ ϕ1(X(z)) = ϕ1((Φ(h)⊗ 1L)(X(z))), from which we

obtain X(h + z) = (Φ(h) ⊗ 1L)X(z) for allz ∈ Cn and Equation (5.3) is

satisfied.

Proposition 5.2.6. There exists an (n − 1)-dimensional vector subspace

V ⊂ Cn and a holomorphic homomorphism ψ : V → Aut(L) such that for

any z ∈ Cn, h ∈ V
X(z +h) = (ψ(h)⊗ 1L)X(z) (5.6)

(ψ(h)⊗ ψ(h))X(z) = X(z). (5.7)

Proof. Again suppose that X(z) = Y (z)/f(z), where Y and f are holomor-

phic functions. Let S be the set of poles ofX and let J be the subgroup of Cn

generated by S. Because Tz0 +h = Φ(h)◦Tz0 for h1,h2 ∈ S, if h1+h2 ∈ S, we

have Φ(h1+h2) = Φ(h1)◦Φ(h2). We can extend the homomorphism Φ from

Proposition 5.2.5 to ψ : J → Aut(L) by defining Φ(h1+h2) := Φ(h1)◦Φ(h2)

even if h1 + h2 /∈ S. We then have X(z +h) = (ψ(h) ⊗ 1L)X(z), that is,

Tz0 +h = ψ(h) ◦ Tz0 and this proves Equation (5.6).

The set of poles of X is invariant under translations by elements of J .

Therefore, J 6= Cn. Since S is an analytic subset of codimension 1, J is

a union of (at most) countably many parallel affine hyperplanes. In part,

it contains a hyperplane V going through zero, hence V ⊂ J . From above

we have ϕ1(Y (h)) = c(h)Φ(h). Now we prove that ψ is holomorphic at

h0 ∈ V . Because X is nondegenerate, there exists z0 ∈ Cn such that X is

holomorphic at z0 and at z0 +h0 and X(z0) and X(z0 +h) are nondegener-

ate. In particular, Tz0 is an isomorphism. Therefore, ψ(h) = Tz0 +h ◦ T−1
z0

is

holomorphic for h in a neighbourhood of h0.

We now need to show thatX satisfies the unitarity condition. We can use

the same arguments as in the proof for Proposition 4.5.5, however we must

be aware that f(u2 − u3) ·X23(u2 − u3) = Y 23(u2 − u3) is a holomorphic

function, so limu3→u2 Y
23(u2 − u3) = Y 23(0) = t23.

From Equation (5.6) we know that X(z +h) = (ψ(h)⊗1L)(X(z)). If we

apply ϕ1 to this equation we find ϕ1

(
X(z +h)

)
= ϕ1

(
(ψ(h)⊗ 1L)(X(z))

)
.

From Proposition 3.2.4 the right hand side of this equation is equal to ψ(h)◦
ϕ1(X(z)). We can use Proposition 3.2.4 to obtain (ψ(h) ⊗ ψ(h))X(z) =
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ψ(h) ◦ ϕ1(X(z)) ◦ ψ(h)∗. This is equal to ϕ1(X(z +h)) ◦ ψ(h)∗. As X is

unitary, this is equal to −ϕ1(X(−z− h))∗ ◦ ψ(h)∗ =

−(ψ(h) ◦ ϕ1(X(−z− h))∗(ϕ1(X(− z)))∗ = ϕ1(X(z)) as required.

Lemma 5.2.7. Suppose that a ∈ Cn such that r(u) = X(ua). If ã− a ∈ V ,

then r̃(u) := X(ua) is a solution to the CYBE equivalent to r(u).

Proof. We know that r̃(u1 − u2) = X(u1ã − u2ã). Let h = ã − a, hence,

ã = h + a. We can write r̃(u1 − u2) = X(u1h + u1a − u2h − u2a) =

X((u1a−u2a)+(u1h−u2h)). From Proposition 5.2.6 part (1) we can write

this as r̃(u1−u2) = (ψ(u1h−u2h)⊗1L)X((u1−u2)a), with ψ having values

in Aut(L), and from part (2) of Proposition 5.2.6 we obtain,

r̃(u1 − u2) = (ψ(u1h− u2h)⊗ 1L)(ψ(u2h)⊗ ψ(u2h))X((u1 − u2)a)

=
(
ψ(u1h− u2h)ψ(u2h)⊗ ψ(u2h)

)
r(u1 − u2)

=
(
ψ(u1h)⊗ ψ(u2h)

)
r(u1 − u2).

From Proposition 4.2.1 this is also a solution to the CYBE.

Theorem 5.2.8. If Γ has rank 1, then r is equivalent to a solution r̃ of the

form f(eku), k ∈ C, where f is a rational function. If rank Γ = 0, then r is

equivalent to a rational solution.

Proof. Suppose that a, b, c; (z1, . . . , zn), γ1, . . . , γ2c have the same meaning

as in the definition of quasi-Abelianness. We will denote by e1, . . . , en be

the basis vectors in Cn corresponding to the coordinate system (z1, . . . , zn),

that is z =
∑

zi ei. Let V ′ = Ce1 ⊕ . . . ⊕ Cep+q be a subspace in Cn. We

represent γi in the form δia + hi, δi ∈ C, hi ∈ V . As the γi are periods of

X we have X(γi) = X(0), that is, γi ∈ S̃. As V ⊂ H, with H the subgroup

generated by S ⊂ S̃, for all h ∈ V, x ∈ Γ we have h + x ∈ S̃. Hence,

γi = δia + hi ∈ S̃ if and only if δia ∈ S̃, and X(δia) = r(δi), so δi ∈ Γ.

We assume that the rank of Γ is either 0 or 1. If V ′ ⊂ V we would have

γ1, . . . , γ2c generating Cn/V as a vector space over R and as Cn/V ∼= C then

δ1, . . . , δ2c would generate C as a vector space over R. But δ1, . . . , δ2c ∈ Γ

so this is impossible. As V ′ is not a subset of V , there exists 1 ≤ i ≤ a+ b

such that ei /∈ V ′. Hence, we can write a in the form kei + h for some

k ∈ C, h ∈ V . We set r̃(u) = X(ukei). By Lemma 5.2.7 r̃ is a solution to

the CYBE equivalent to r. Hence, if i ≤ a then r̃ ∼ R for some rational

function R, and if i > a, then r̃(u) ∼ R(eku) for some rational function R.

The set of poles of r̃ is Γ. Therefore, if the rank of Γ is 1, the function r̃

cannot be rational, while if Γ = {0}, then r̃ cannot have the form R(eku)

where R is rational.
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Remark 5.2.9. Rational solutions are equivalent to an r-matrix which is a

rational function of u. Trigonometric solutions are equivalent to an r-matrix

of the form f(eku), where f is a rational function with values in L⊗ L.

The simplest rational solution is shown in the following proposition:

Proposition 5.2.10. The following r satisfies the CYBE:

r(u) =
t

u
. (5.8)

Proof. If we substitute r(u) from Equation (5.8) into the CYBE we must

show that

1

u(u+ v)
[t12, t13] +

1

uv
[t12, t23] +

1

(u+ v)v
[t13, t23] = 0.

Using Corollary 3.2.18 we can write the left-hand side of this equation as(
1

u(u+ v)
− 1

uv
+

1

(u+ v)v

)
[t12, t13]

or,
v − (u+ v) + v

uv(u+ v)
[t12, t13] = 0

as required.

This was the first solution ever found, explicitly we can write this for

sl(2) as

rrat(z) =
1

z

(
1

2
h⊗ h+ e⊗ f + f ⊗ e

)
. (5.9)

Proposition 5.2.11. Let r(u) = t
u

+ r0, with r0 ∈ L ⊗ L. Then r is a

solution to the CYBE if and only if r0 is unitary and satisfies Equation

(4.6).

Proof. If we put r(u) into the CYBE, we obtain[
t12

u
+ r12

0 ,
t13

u+ v
+ r13

0

]
+

[
t12

u
+ r12

0 ,
t23

v
+ r23

0

]
+

[
t13

u+ v
+ r13

0 ,
t23

v
+ r23

0

]
= 0. (5.10)
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From Proposition 5.2.10 the nonzero terms of Equation (5.10) are:

[r12
0 , r

13
0 ] + [r12

0 , r
23
0 ] + [r13

0 , r
23
0 ]+

1

u
[t12, r13

0 ] +
1

u+ v
[r12

0 , t
13] +

1

u
[t12, r23

0 ] +
1

v
[r12

0 , t
23]

+
1

u+ v
[t13, r23

0 ] +
1

v
[r13

0 , t
23] = 0.

Simplifying, we obtain

[r12
0 , r

13
0 ] + [r12

0 , r
23
0 ] + [r13

0 , r
23
0 ] +

1

u
[t12, r13

0 + r23
0 ]

+
1

u+ v
[r12

0 − r23
0 , t

13] +
1

v
[r12

0 + r13
0 , t

23] = 0.

By Corollary 3.2.17, the fourth and sixth terms are zero and we are left

with

[r12
0 , r

13
0 ] + [r12

0 , r
23
0 ] + [r13

0 , r
23
0 ] + +

1

u+ v
[r12

0 − r23
0 , t

13] = 0. (5.11)

Now, if r0 satisfies Equation (4.6) the first three terms also vanish. Applying

ϕ2 to the remaining term we find that it is equal to [ϕ1(r0)(x), ϕ1(t)(y)] +

ϕ1(t)[ϕ1(τ(r0))(x), y]. As ϕ1(t) = 1L this can be written as [ϕ1(r0)(x), y] +

[ϕ1(τ(r0))(x), y] = [ϕ1(r0 + τ(r))(x), y]. But r0 is unitary so this terms is

also equal to zero. Looking again at Equation (5.11) we must show that if

this equation holds, then r0 must be a unitary solution to Equation (4.6).

We obtain from Equation (5.11) that

− 1

u+ v

[
r12

0 − r23
0 , t

13
]

= [r12
0 , r

13
0 ] + [r12

0 , r
23
0 ] + [r13

0 , r
23
0 ].

The left-hand-side of this equation depends on u and v but the right side

does not. The only way they can be equal then, is if they are both zero.

In fact, the degree of the polynomial part of a rational solution to the

CYBE can be estimated. In 1984 Drinfeld conjectured that any rational

solution r(u, v) to the CYBE taking values in L is equivalent to one of the

form:

r(u, v) = t/(u− v) + g(u, v), (5.12)

where g is a polynomial in u, v and degu g = degv g ≤ 1. This conjecture

was proved by Stolin in [25] for L = sl(n).

Nondegenerate rational solutions were completely classified by Stolin.

In [25] he gives all “nontrivial” rational solutions for sl(2), sl(3), sl(4) and
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several series of examples in the general case. While in [24] he lists all con-

stant solutions to the CYBE for the function with values in sl(2) and sl(3)

and gives an algorithm which allows one to obtain all constant solutions for

L.

Example 5.2.12. An example of a rational solution in sl(2) given in [19]

is:

rrat(z) =
1 + z

4(1− z)
h⊗ h+

f ⊗ e+ ze⊗ f
1− z

. (5.13)

Example 5.2.13. Another example of a rational solution in sl(2) given in

[19]:

rrat(z) =
1

z
(
1

2
h⊗ h+ e⊗ f + f ⊗ e) + z(f ⊗ h+ h⊗ f)− z3f ⊗ f. (5.14)

For sl(2) Stolin gave the following 2 parametric solution:

rrat(u, v) =
t

u− v
− u

2
f ⊗ h+

v

2
h⊗ f (5.15)

which is gauge equivalent to the above solution, Equation (5.14).

In describing trigonometric solutions important roles are played by the

concepts of Coxeter automorphisms and simple weights which we do not

cover in the scope of this thesis.

Recall the definitions of roots and the root space decomposition from

Section 1.5. The classical trigonometric solutions are obtained as follows.

Let

L = H⊕
⊕

α∈φ Lα be the root space decomposition (Equation (1.2)). Choose

x ∈ Lα and y ∈ L−α so that κ(x, y) = 1 and let

r0 =
∑
α>0

(x⊗ y − y ⊗ x).

Then

r(u) = r0 − t+
2t

1− eu
is a trigonometric solution.

The following are examples of trigonometric solutions in sl(2);

Example 5.2.14. (given in [8])

rtrg(z) =
cos(z)

2 sin(z)
h⊗ h+

1

sin(z)

(
e⊗ f + f ⊗ e

)
+ sin(z)f ⊗ f. (5.16)
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Example 5.2.15. (given in [19])

rtrg(z) =
1 + ez

4(1− ez)
h⊗ h+

1

1− ez
f ⊗ e+

ez

1− ez
e⊗ f (5.17)





Chapter 6

The Associative Yang-Baxter

Equation

In this chapter we introduce the notion of associative r-matrices, which were

introduced in [1] and [2], and again independently in [19]. We aim to give a

brief overview of the AYBE and explain the relation between classical and

associative Yang-Baxter equations.

6.1 The Associative Yang-Baxter Equation

Let A be an associative algebra. In the case where there is no dependence on

variables, the associative Yang-Baxter Equation for r over A is the equation

r12r13 − r23r13 + r13r23 = 0

where r is a meromorphic function of two variables (u, v) in a neighbourhood

of (0, 0) taking values in A⊗A, where A = Mat(n,C) is the matrix algebra.

The algebraic meaning of this equation is explained in [1, 2].

For the purposes of this thesis, we use a construction of Polishchuk, the

AYBE with parameters:

r12(u3, u2; y1, y2)r13(u1, u3; y1, y3)− r23(u1, u3; y2, y3)r12(u1, u2; y1, y2)

+ r13(u1, u2; y1, y3)r23(u2, u3; y2, y3) = 0. (6.1)

A solution is called unitary if

r(v1, v2; y1, y2) = −τ(r(v2, v1; y2, y1)).

93
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Assume a unitary solution r(v1, v2; y1, y2) of the AYBE depends on the

difference u = u1−u2, v = u2−u3 of the first pair of parameters only. Then

Equation (6.1) can be rewritten as

r12(−v; y1, y2)r13(u+ v; y1, y3)− r23(u+ v; y2, y3)r12(u; y1, y2)

+ r13(u; y1, y3)r23(v; y2, y3) = 0 (6.2)

where r is a meromorphic function of two complex variables with values in

A⊗ A.

Example 6.1.1. An example of a solution of the AYBE, Equation (6.2),

taken from [8] is:

r(v; y1, y2) =
1

v
1⊗1+

2

y2 − y1

(
e11⊗ e11 + e22⊗ e22 + e12⊗ e21 + e21⊗ e12

)
+ (v − y1)e21 ⊗ h+ (v + y2)h⊗ e21 + v(v − y1)(v + y2)e21 ⊗ e21 (6.3)

where 1 = e11 + e22.

Finally, assume that a solution to the AYBE, Equation (6.1), has the

form r(v1, v2; y1, y2) = r(v2− v1; y2− y1). Then the AYBE can be rewritten

as

r12(−v;x)r13(u+ v;x+ y)− r23(u+ v; y)r12(u;x)

+ r13(u;x+ y)r23(v; y) = 0. (6.4)

Example 6.1.2. An example of a solution of this type, taken from [8], is:

r(v, y) =
1

2v
1⊗ 1 +

1

y
(e11 ⊗ e11 + e22 ⊗ e22 + e12 ⊗ e21 + e21 ⊗ e12). (6.5)

6.2 The Relation Between the AYBE and

the CYBE

One special case studied in [19] is where A = Mat(n,C) a solution r to the

AYBE also satisfies the unitarity condition

r(u, v) = −τ(r(−u,−v))

and has a Laurent expansion near u = 0 of the form

r(u, v) =
1⊗ 1

u
+ r0(v) + ur1(v) +O(u2).
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In this case, it was shown that r0(v) satisfies the CYBE, that is,

[r12
0 (u), r13

0 (u+ v)] + [r12
0 (u), r23

0 (v)] + [r13
0 (u+ v), r23

0 (v)] = 0

and the unitarity condition

τ(r(−u)) = −r(u)

holds. This follows from the fact that even without the Laurent condition,

when the limit r̄(u) = (pr⊗ pr)r(u, v) |u=0 exists (pr is the projection away

from the identity to traceless matrices), it is a unitary solution of the CYBE:

Proposition 6.2.1. Let A = L and pr : L → L′ the orthogonal projection

with respect to the standard form (B,C) = tr(BC). If r is a unitary solution

to the AYBE, and the limit r̄(u) = [(pr⊗ pr)r(u, v)] |u=0 exists, then r̄ is a

unitary solution to the CYBE.

Proof. ([19] Lemma 1.2) Note that the unitarity of r̄ follows from the unitar-

ity of r: r(u, v) = −τ(r(−u,−v), therefore, r̄(u) = −[(pr⊗ pr)τ(r(−u,−v))] =

−τ
(
[(pr⊗ pr)r(−u,−v)]

)
. Substituting −τ(r(−u,−v)) = r(u, v) into Equa-

tion (6.4) we have,

− r13(u+ v, x+ y)
(
τr(v,−x)

)12
+
(
τr(−u,−x)

)12
r23(u+ v, y)

+ r23(v, y)r13(u, x+ y) = 0. (6.6)

If we apply the map τ213, defined in the proof for Proposition 4.4.2 part (2),

to Equation (6.2) we obtain,

− r12(v,−x)r23(u+ v, w + x) + r13(u+ v, x)r12(−u,−w)

+ r23(u,w + x)r13(v, x) = 0

We now make the linear change of variables given by u 7→ v, v 7→ u,

w 7→ −w and x 7→ w + x,

r13(u+v, w+x)r12(−v, w)−r12(u,w)r23(u+v, x)+r23(v, x)r13(u,w+x) = 0.

(6.7)

If we subtract Equation (6.7) from Equation (6.4) we get

[r12(−v, w), r13(u+ v, w + x)] + [r12(u,w), r23(u+ v, x)]

+ [r13(u,w + x), r23(v, x)] = 0. (6.8)
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We can apply the map pr⊗ pr⊗ pr to obtain

[
(
(pr⊗ pr)r(−v, w)

)12
,
(
(pr⊗ pr)r(u+ v, w + x)

)13
]+

[
(
(pr⊗ pr)r(u,w)

)12
,
(
(pr⊗ pr)r(u+ v, x)

)23
]+

[
(
(pr⊗ pr)r(u,w + x)

)13
,
(
(pr⊗ pr)r(v, x)

)23
] = 0, (6.9)

letting u = v and taking the limit as u → 0 we find that r̄(u) satisfies the

CYBE.

Remark 6.2.2. It is not known whether for every unitary nondegenerate

solution r̄ to the CYBE there exists a unitary solution to the AYBE of the

form 1⊗1
u

+ r0(v) + ur1(v) +O(u2) such that (pr⊗ pr)(r0(v)) = r̄(v).

Corollary 6.2.3. If r has a Laurent expansion at u = 0 of the form

r(u, v) =
1⊗ 1

u
+ r0(v) + ur1(v) +O(u2) (6.10)

and is an associative solution to the AYBE, then r0(v) is a solution to the

CYBE.

Proof. This follows from Equation (6.8) since 1 commutes with anything.

Polishchuk conjectured that for A = Mat(n,C), the equivalence of the

Belavin and Drinfeld classification holds, that is, all nondegenerate solutions

of the AYBE are equivalent to either elliptic, or trigonometric, or rational

solutions.



Chapter 7

The ybe.lib Library

One of the main goals of the work presented in this thesis was to produce a

piece of software which performs the calculations necessary to check whether

or not a given expression is a solution to the CYBE or the AYBE. In this

chapter, we outline the main elements of the ybe.lib library, the piece of

software produced. We first give a brief summary of the computer alge-

bra system SINGULAR, we then discuss some of the more frequently used

SINGULAR commands, this material is from [13] and [10]. We also summa-

rize the challenges in implementing the ybe.lib library. The chapter also

includes a number of examples of our SINGULAR code.

7.1 What is SINGULAR?

SINGULAR is a computer algebra system for polynomial computations, with

special emphasis on commutative and non-commutative algebra, algebraic

geometry, and singularity theory. It is free and open-source under the GNU

General Public Licence. It can be downloaded from its homepage

www.singular.uni-kl.de

SINGULAR consists of a kernel written in C/C++ programming language,

and libraries written in SINGULAR’s programming language. These libraries

improve the internal functionality provided by the kernel and are easily

changed and extended by the user. SINGULAR can either be run in a text

terminal or within Emacs and is operating system independent.

97
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We will now give some general information for users not familiar with

SINGULAR. Once SINGULAR is started, it awaits an input after the prompt

>. Every statement is terminated by a semicolon ;. Starting a line with a

double backslash // denotes a comment and the rest of the line is ignored

in calculations.

SINGULAR is a special purpose system for polynomial computations as

it aims to enable the user to compute effectively in a polynomial ring as

well as in the localisation of a polynomial ring at a maximal ideal. Hence,

for almost all computations to be carried out in SINGULAR, a ring has to be

defined first. If no ring has been created, only integer and string operations

are available. SINGULAR offers very many different commutative rings and

a class of non-commutative rings. In the following, ring always means a

commutative ring. The rings in SINGULAR are either

1. polynomial rings over a field

2. localisations of polynomial rings, or

3. quotient rings with respect to an ideal.

To calculate with objects as polynomials, ideals, matrices, modules, and

polynomial vectors a ring has to be defined first:

> ring r = 0, (x,y,z), dp;

The definition of a ring consists of three parts, the first part determines the

ground field, the second part determines the names of the ring variables,

and the third part determines the monomial ordering to be used. The above

example declares a ring called r with a ground field of characteristic 0 (that

is, rational numbers) and ring variables called x,y and z. The dp at the end

means that degree reverse lexicographical ordering is used. All rings come

equipped with a monimial order. See [13] Section 1.2 for a more detailed

discussion of monomial orderings.

Defining a ring makes this ring the current active basering. However,

if we want to calculate in a previously defined ring, we use the function

setring. Once a ring is active, we can define polynomials. Ideals are

represented as lists of polynomials which generate the ideal. A monomial

x2 can be entered either as x̂ 2 or x2.

It is possible to define procedures which combine several commands to

form a new one. Procedures are defined with the keyword proc followed by

a name and an optional parameter list with specified types. A procedure



7.1. WHAT IS SINGULAR? 99

may return an object by using the command return or can export an object

to be used outside the procedure using the command export.

The distribution of SINGULAR contains several libraries, which extend the

functionality of SINGULAR. Each of these libraries is a collection of useful

procedures based on the kernel commands. The command help all.lib;

lists all libraries together with a one-line explanation.

Libraries are loaded with the command LIB followed by the library name

in inverted commas. For example LIB "ybe.lib";. The procedures in a

library have a help part, which can be displayed by typing help followed

by the procedure name. Examples can also be displayed by typing example

followed by the procedure name. Also, the library itself has a help section,

which shows a list of all the functions available for the user, which are

contained in the library.

The following is a brief overview of the most important data types we

have used in our SINGULAR library:

int: Variables of type int represent integers. Some useful int operations

and int related functions are:

++ changes its operand to its successor.

% integer modulo (the remainder of the division)

char returns the characteristic of the coefficient field of a ring.

nvars returns the number of variables of a ring.

rvar returns the number of the variable if the name/poly is a ring

variable of the basering or if the string is the name of a ring

variable of the basering; returns 0 if not. Hence the return value

of rvar can also be used in a boolean context to check whether

the variable exists.

size (of list, string) returns the length, i.e., the number of characters,

entries or elements

var var(n) returns the n-th ring variable

list Lists are arrays whose elements can be of any type (including ring and

qring).

map Maps are ring maps from a preimage ring into the basering

poly Polynomials are the basic data for all main algorithms in SINGULAR.

Polynomials can only be defined or accessed with respect to a basering,
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which determines the coefficient type, the names of the indeterminants

and the monomial ordering.

ring Rings are used to describe properties of polynomials, ideals, etc. Al-

most all computations in SINGULAR require a basering. The following

are some ring related functions we have used:

charstr returns the description of the coefficient field of a ring.

ordstr returns the description of the monomial ordering of the ring.

setring changes the basering to another (already defined) ring

varstr returns the list of the names of the ring variables as a string or

the name of the n-th ring variable, where n is given by the int

expression. If the ring name is omitted, the basering is used,

thus varstr(n) is equivalent to varstr(basering,n).

string Variables of type string are used for output (almost every type can

be “converted” to string) and for creating new commands at runtime.

String constants consist of a sequence of ANY characters between

a starting " and a closing " Strings are especially useful to define

new rings inside procedures as they may be used to execute Singular

commands using the function execute. The result is the same as if

the commands were written on the command line.

Some important SINGULAR commands which we use extensively in our

program are the following:

def: Objects may be defined without a specific type: they get their type

from the first assignment to them.

proc: Procedures are sequences of SINGULAR commands in a special format.

They are used to extend the set of SINGULAR commands with user

defined commands. Once a procedure is defined it can be used like

any other SINGULAR command.

imap: identity map on common subrings. It is the map between rings and

qrings with compatible ground fields which is the identity on variables

and parameters of the same name and 0 otherwise.

defined: defined(name) returns a value 6= 0 (TRUE) if there is a user-defined

object with this name, and 0 (FALSE) otherwise.

execute: executes a string containing a sequence of SINGULAR commands.
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execute: returns the first position of a substring in a string or 0 (if not found).

Starts the search at the position given in the (optional) third argu-

ment.

kill: deletes objects.

lead: lead(I) returns the leading term(s) of a polynomial.

leadcoef: leadcoef(f) returns the leading coefficient of a polynomial with re-

spect to the monomial ordering.

ringlist: ringlist(r) decomposes a ring/qring into a list of four components:

a) the field description in the following format:

for Q, Z/p: the characteristic (0 or prime number)

for real/complex: the characteristic (always 0), the precision (2

integers), the name of the imaginary unit.

b) the names of the variables (a list of L string, L[i] is the name of

the i-th variable.

c) the monomial ordering

d) the quotient ideal.

setring: setring(S) changes the basering to the (already defined) ring S.

subst: subst(f,x,m) substitutes the ring variable x for the term m.

A sequence of commands surrounded by curly brackets is called a block.

Blocks are used in SINGULAR to define procedures and to collect commands

belonging to if, else, for and while statements.

The for is for repetitive, conditional execution of a command block.

In for(i=1; i<7; i++), the initial command i=1 is executed first. Then

the boolean expression i<7 is evaluated. If its value is TRUE the block is

executed, otherwise the for statement is complete. After each execution of

the block, the iterate command i++ is executed and the boolean expression

is evaluated. This is repeated until the boolean expression evaluates to

FALSE. The command break; leaves the innermost for construct.

The if executes true block if the boolean condition is true. If the if

statement is followed by an else statement and the boolean condition is

false, then false block is executed. The command if(i==1) executes the

command block only if the boolean expression i = 1 is TRUE and does

nothing otherwise. The command if(i==1){..}else{..} executes the if
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command if the boolean expression i = 1 is TRUE and executes the else

command otherwise.

The while is repetitive, conditional execution of a block. In while(i<7),

the boolean expression i<7 is evaluated and if its value is TRUE, the block is

executed. This is repeated until the boolean expression evaluates to FALSE.

The command break leaves the innermost while construction.

7.2 The ybe.lib library

A SINGULAR library is a collection of SINGULAR procedures in a file. SINGULAR

reads a library with the command LIB. After loading the library its pro-

cedures can be used like any built-in SINGULAR function. We use several

in-built SINGULAR libraries in our ybe.lib library: the library latex.lib

contains procedures for typesetting of Singular objects in LATEX; and the

library ncalg.lib contains commands for defining important Lie algebras.

The ybe.lib library is the result of the current research. The library

is written in SINGULAR. Singular was the most obvious option as it is open

source and is specifically designed for polynomial computations. SINGULAR

can also facilitate calculations in non-commutative algebras.

The main idea is that the user can input an expression in order to

check whether or not it is a solution to the CYBE or the AYBE. The user

should be able to check the value of the left-hand-side of the CYBE or

AYBE for any expression entered. The framework of the library should also

allow the user to convert this value to LATEX format. Apart from checking

solutions, the user will also have access to a procedure which can calculate

the Casimir element (see Definition 2.5.1) for sl(n) and two procedures which

give rational solutions to the CYBE with 2 parameters.

The library is organised as follows: An info- and version- appear at

the beginning of the library before the first procedure definition. We begin

with an overview of the functions of the library and then list all procedures

in the library with a short description of the function of each procedure.

The procedures are in four separate categories, first are procedures relating

to checking solutions to the CYBE, the next section has procedures relating

to checking solutions to the AYBE (some procedures are common to both

of these), in the next section we have procedures which allow us to convert

the value of the left-hand-side of the CYBE/AYBE to LATEX format, and

finally we have procedures which are related to calculating the Casimir

element of a given Lie algebra. Each procedure which is not accessible by
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users is declared static. Each procedure which is not declared static has

an example and help section.

7.3 Implementation Details of ybe.lib

In this section we aim to give a detailed description of all the procedures

in our ybe.lib library. We also explain the process each procedure goes

through and how it helps to establish whether or not an expression is a

solution to the CYBE/AYBE.

Recall again the classical Yang-Baxter equation:

[r12(u), r13(u+ v)] + [r12(u), r23(v)] + [r13(u+ v), r23(v)] = 0 (7.1)

and the associative Yang-Baxter equation:

r12(−v, w)r13(u+v, w+x)−r23(u+v, x)r12(u,w)+r13(u,w+x)r23(v, x) = 0.

(7.2)

When we produced our ybe.lib library, we used the following calculations:

Let L be a Lie algebra, and let r be an L⊗ L-valued function. In terms of

a basis {Iµ} of L, write

r(u) =
∑
µν

rµν(u)Iµ ⊗ Iν

with C-valued functions rµν(u). Recall from Definition 3.2.8 the linear

maps (a ⊗ b)ij with a, b ∈ L and 1 ≤ i < j ≤ 3. So we have r12(u) =∑
rµνIµ ⊗ Iν ⊗ 1 ∈ U(L) ⊗ U(L) ⊗ U(L) and so on, where U(L) denotes

the universal enveloping algebra (see Definition 2.4.1). We know that the

defining relations of U(L) are the same as the relations between the basis

elements of the Lie algebra L, therefore we note, for example, that in cal-

culating the first term in the CYBE, Equation (7.1), we use the operation
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of commutation in L:

[r12(u), r13(v)] =
[(∑

µν

rµν(u)Iµ ⊗ Iν
)12

,
(∑

σρ

rσρ(u+ v)Iσ ⊗ Iρ
)13]

=
∑
µνσρ

rµν(u)rσρ(u+ v)
[
Iµ ⊗ Iν ⊗ 1, Iσ ⊗ 1⊗ Iρ

]
=
∑
µνσρ

rµν(u)rσρ(u+ v)
(

(Iµ ⊗ Iν ⊗ 1)(Iσ ⊗ 1⊗ Iρ)

− (Iσ ⊗ 1⊗ Iρ)(Iµ ⊗ Iν ⊗ 1)
)

=
∑
µνσρ

rµν(u)rσρ(u+ v)(Iµ · Iσ ⊗ Iν · 1⊗ 1 · Iρ

Iσ · Iµ ⊗ 1 · Iν ⊗ Iρ · 1)

=
∑
µνσρ

rµν(u)rσρ(u+ v)
(

[Iµ, Iσ]⊗ Iν ⊗ Iρ
)
.

Similarly,

[r12(u), r23(v)] =
∑
µνσρ

rµν(u)rσρ(v)
(
Iµ ⊗ [Iν , Iσ]⊗ Iρ

)
[r13(u), r23(v)] =

∑
µνσρ

rµν(u+ v)rσρ(v)
(
Iµ ⊗ Iσ ⊗ [Iν , Iρ]

)
.

Therefore, we needed to create a ring with the basis elements of L and

variables u and v.

Remark 7.3.1. Note that for solutions of the form r(u, v) we must create a

ring with variables u1, u2 and u3.

Remark 7.3.2. Please note that the SINGULAR relations for sl(n) do not

correspond exactly to those given in Example 1.6.6. In SINGULAR, using

sl(5) as an example, the basis elements would correspond to the following

matrix: 
x4 x7 x9 x10

y4 x3 x6 x8

y7 y3 x2 x5

y9 y6 y2 x1

y10 y8 y5 y1


with h1 = e44 − e55, . . . , h4 = e11 − e22.
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In calculating the AYBE, Equation (7.2), we used the rules of matrix

products:

r13(u+ v,y + x)r12(−v, y)

=
∑

ijklrspq

rijkl(u+ v, y + x)rrspq(−v, y)
(
eij ⊗ 1⊗ ekl

)(
ers ⊗ epq ⊗ 1

)
=

∑
ijklrspq

rijkl(u+ v, y + x)rrspq(−v, y)
(
eij · ers ⊗ epq ⊗ ekl

)
=

∑
ijklrspq

rijkl(u+ v, y + x)rrspq(−v, y)δjr
(
eis ⊗ epq ⊗ ekl).

Similarly,

r12(u, y)r23(u+ v, x) =
∑

ijklrspq

rijkl(u, y)rrspq(u+ v, x)δlr
(
eij ⊗ eks ⊗ epq

)
,

r23(v, x)r13(u, y + x) =
∑

ijklrspq

rijkl(v, x)rrspq(u, y + x)δlp
(
ers ⊗ eij ⊗ ekp

)
.

Therefore, we needed to include all basis elements of the associative

algebra in question, along with variables u, v, y, and x.

Remark 7.3.3. Note that for the 3 parametric associative solution, we need

to include variables u, v, x1, x2, and x3.

In order to check whether or not an expression is a solution to the

YBE the process the user must undertake is as follows: First they must

define a ring, as SINGULAR cannot perform calculations unless a ring has

been defined. The user must then set this ring as the basering using the

SINGULAR command setring. The next step is to input the expression to

be checked. Numerous expressions can be checked once the ring they are in

has been set as the basering.

We will now describe some of the procedures of ybe.lib in more detail.

The procedure createRingRational creates what we call a ‘rational ring’

that is, a ring within which we can carry out calculations to test for rational

solutions. The user inputs the Lie algebra that the expression to be checked

is in, between inverted commas, for example “sl(3)”. This procedure exports

this inputted ring as the ‘original ring’, note that this ring contains all basis

elements of the Lie algebra L. What is returned is the ’original ring’ with

required parameters u and v included, plus the variable z included to the

variable list. We include the u and v as parameters and not variables because

they will be used in the denominator of internal calculations and SINGULAR

does not allow variables to be used in the denominator. The variable z
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is from the expression entered r(z). For example, in sl(2) we create the

following ring:

> def ratRing=createRingRational("sl(2)");

> ratRing;

characteristic : 0

2 parameter : u v

minpoly : 0

number of vars : 4

block 1 : ordering dp

: names e f h z

block 2 : ordering C

>

Note that this commutative ring is Q(u, v)[e, f, h, z].

The procedures createRingRational2par and createRingTrig have

similar inputs and outputs with suitable parameters and variables included.

For example, in sl(3) we can create the following 3 parametric ’rational ring’:

> def ratRing2par=createRingRational2par("sl(3)");

> ratRing2par;

characteristic : 0

3 parameter : u1 u2 u3

minpoly : 0

number of vars : 10

block 1 : ordering dp

: names x(1) x(2) x(3) y(1) y(2) y(3) h(1) h(2) z 1 z 2

block 2 : ordering C

>

which is the commutative ring Q(u1, u2, u3)[x1, x2, x3, y1, y2, y3 , h1, h2, z1, z2],

and the following ’trigonometric ring’:

> def trigRing=createRingTrig("sl(3)");

> trigRing;

characteristic : 0

2 parameter : u v

minpoly : 0

number of vars : 15

block 1 : ordering dp
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: names x(1) x(2) x(3) y(1) y(2) y(3) h(1) h(2) z sin cos

cos u sin u cos v sin v I

block 2 : ordering C

is the commutative ring Q(u, v)[x1, x2, x3, y1, y2, y3, h1, h2, z, sin, cos, sin(u),

cos(u), sin(v), cos(v), I]. Note that the I in the variable string of the ’trigono-

metric ring’ is the variable that the user should enter for the complex number

i. It is converted to this complex i by introducing the ideal I2 + 1 at a later

stage.

For the AYBE we create the following ring for checking solutions in sl(2)

with 3 parameters:

> def assocRing=createRingA3par(2);

> assocRing;

characteristic : 0

5 parameter : u v w 1 w 2 w 3

minpoly : 0

number of vars : 7

block 1 : ordering dp

: names e 1 1 e 1 2 e 2 1 e 2 2 z y 1 y 2

block 2 : ordering C

which is the ring Q(u, v, w1, w2, w3)[e11, e12, e21, e22, z, y1, y2]. These proce-

dures use the static internal procedure internalnoncalg and

internalAssocRing.

The main procedures for checking solutions are IsSolutionCYBE, and

IsSolutionAYBE. The user must break down each element of the expression

and input it as a list in the form: numerator, denominator, tensor 1, tensor

2. For example, the rational expression in sl(2), 1
z
(e⊗ f + f ⊗ e) should be

entered as:

>IsSolutionCYBE(1,z,e,f,\
1,z,f,e);

and the trigonometric expression in sl(2),

cos(z)

2 sin(z)
h⊗ h+

1

sin(z)
e⊗ f +

1

sin(z)
f ⊗ e+ sin(z)f ⊗ f

should be entered as:

>IsSolutionCYBE(cos,2*sin,h,h,\
1,sin,e,f,\
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1,sin,f,e,\
sin,1,f,f);

The process involved in calculating whether or not the expression input is

a solution is as follows:

1. The procedure performs an initial check to determine which ring the

expression is contained in. We first set the ring type to ‘rational ring’

with one parameter, we use the SINGULAR command find to look for

either z 1 or sin in the variable string of the basering. If either of these

are found then the ring type is changed accordingly. For ‘associative

rings’ the procedure is very similar; the ring type is initially set to

the three parameter associative ring, but there is an x in the variable

string of the basering it is changed to the 2 parameter ‘associative

ring’.

2. The user-inputted list is split into four separate lists by the procedure

MakeLists.

3. A new ring is created to be used internally. This ring has additional

variables which allow us to mimic the rules of tensor product.

4. The four lists created are mapped into this internal ring.

5. The procedure totalAllBrackets or totalAYBE is used to give the

value of the left-hand-side of the CYBE or AYBE. These procedures

take each of the three elements in Equation (7.1) or (7.2) and works

out their value. The results are then added/subtracted according to

the equation being tested.

6. If the returned value of the above procedure is zero, then SINGULAR

prints the text “Is a solution to the CYBE” or “Is a solution

to the AYBE”. However, if the value is not zero, then this value is

converted to a string of the same format type as the input: numerator,

denominator, tensor1, tensor2, tensor3, linebreak, etc. and is exported

so that it can be printed, if required, by the procedure showValue.

SINGULAR then prints the text “Is not a solution to the CYBE”

or “Is not a solution to the AYBE”.

For checking whether expressions are solutions to the CYBE, the pro-

cedure totalAllBrackets performs all the main computations. The input

is the list of four lists made by the procedure MakeLists, a list of numer-

ators, a list of denominators, a list of all the first tensors, and a list of all
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the second tensors. Firstly, the procedure takes every combination of the

double tensors and uses the procedure nonCommutativePart to perform the

calculations shown above, that is, for a⊗ b, c⊗ d ∈ L⊗ L:

[(a⊗ b)12, (c⊗ d)13] = [a, c]⊗ b⊗ d, (7.3)

[(a⊗ b)12, (c⊗ d)23] = a⊗ [b, c]⊗ d, (7.4)

[(a⊗ b)13, (c⊗ d)23] = a⊗ c⊗ [b, d].. (7.5)

The Lie bracket in each part is also calculated in this procedure. The results

are given in the form of a list of three variables.

For example, for the expression r(z) = 1
z
(e⊗ f + f ⊗ h), calculations in

the procedure nonCommutativePart would include:

1. nonCommutativePart[1](e,f,e,f); calculates the Lie bracket in Equa-

tion (7.3) and returns:

0,f,f.

2. nonCommutativePart[2](f,h,e,f); calculates the Lie bracket in Equa-

tion (7.4) and returns:

f,2e,f.

3. nonCommutativePart[3](e,f,f,h); calculates the Lie bracket in Equa-

tion (7.5) and returns:

e,f,2f.

The procedure MakeTensor then takes these lists and returns a polyno-

mial which mimics the rules of tensor product.

Taking the same examples as above, we would obtain the following:

1. MakeTensor(0,f,f); creates the polynomial:

0.

2. MakeTensor(f,2e,f); creates the polynomial:

2·f1·e2·f3.

3. MakeTensor(3,f,2f); creates the polynomial:

2·e1·f2·f3.

This process involved the procedure MakeTensor is explained in more

detail in Section 7.4. We then take into consideration the coefficients of each

tensor. The variable ’z’ is replaced by the appropriate parameters, u,v, or

u+v using the SINGULAR command subst. These steps are taken separately

for each bracket from Equations (7.3-7.5) and are then added together. If



110 CHAPTER 7. THE YBE.LIB LIBRARY

the expression entered is a solution to the CYBE then the total should be

zero.

For checking expressions in the AYBE, the procedure totalAYBE works

in a similar manner, the difference being that the procedure matrixMult is

used in place of MakeTensor. This procedure mimics the rules of matrix

multiplication. SINGULAR contains a procedure for multiplying matrices,

but this needs the matrices to be input explicitly, whereas in our associative

procedure, we use variables e11, e12, . . . , enn but do not explicitly define each

variable. The procedure matrixMult takes the position each variable lies in

the variable string of the ring to calculate the integers i and j from eij. We

then use the rule eij · ekl = δjkeil.

The procedure showValue allows the user to see the value of the left-

hand-side of the CYBE or AYBE of last expression checked. This does not

work for trigonometric solutions. This procedure must be used directly after

checking an expression using IsSolutionCYBE or IsSolutionAYBE. These

two procedures export the value of the left-hand-side of the YBE for expres-

sions which are not solutions. The procedure showValue simply returns this

value. For example,

> setring ratRing;

> IsSolutionCYBE(1,z,e,f,\
. 1,z,f,h);

Is not a solution to the CYBE

> showValue();

2,(u2+uv),f,e,f

2,(uv+v2),e,f,f

-1,(uv),e,h,f

-1,(u2+uv),h,h,f

-2,(uv),f,f,h

1,(u2+uv),h,f,h

The procedure casimirEl computes the Casimir element for L = sl(n)

with respect to the trace form. This procedure uses the expression for the

Casimir element of sl(n) given in Remark 2.5.9 and returns Equation (2.7).

From Proposition 5.2.10 we know that t
u

is a solution to the CYBE, the

procedure casimirZTest returns this expression in the appropriate format

to be entered directly into our procedure IsSolutionCYBE when the ’ratio-

nal ring’ has been set. Furthermore, the expression t
u1−u2 is a solution to

the rational CYBE with 2 parameters, the procedure casimirZTest2par
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returns this expression in the appropriate format to be entered directly into

our procedure IsSolutionCYBE when the ’rational ring’ with 2 parameters

has been set. For example,

> def ratRing=createRingRational("sl(2)");

> setring ratRing;

> IsSolutionCYBE(casimirZTest(2));

Is a solution to the CYBE

In order to test our library for the CYBE, we used rational solutions of

type r(u, v) == t/(u − v) + g(u, v) (Equation (5.12)) which were provided

by Thilo Henrich [15]. Solutions of this type for sl(n) can be found using

the following equation:

r(u, v) =
t

u− v
+ u

[
e12 ⊗ h∗1 −

n∑
j=3

e1,j ⊗
(n−j+1∑

k=1

ej+k−1,k+1

)]

− v
[
h∗1 ⊗ e12 −

n∑
j=3

(n−j+1∑
k=1

ej+k−1,k+1

)
⊗ e1,j

]

+

[n−1∑
j=2

e1,j ⊗
(n−j∑
k=1

ej+k,k+1

)

+
n−1∑
i=2

ei,i+1 ⊗ h∗i −
n−2∑
i=2

(n−i∑
k=2

ei,i+k ⊗
(n−i−k+1∑

l=1

ei+k+l−1,l+i

))]

+

[n−1∑
j=2

(n−j∑
k=1

ej+k,k+1

)
⊗ e1,j

+
n−1∑
i=2

h∗i ⊗ ei,i+1 −
n−2∑
i=2

(n−i∑
k=2

(n−i−k+1∑
l=1

ei+k+l−1,l+i

)
⊗ ei,i+k

)]
. (7.6)
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or the following equation:

r(u, v) =
t

u− v
+ v

[
h∗n−1 ⊗ en,n−1 +

n−2∑
i=1

( i∑
j=1

ej,j+n−i−1

)
⊗ en,i

]

− u
[
en,n−1 ⊗ h∗n−1 +

n−2∑
i=1

en,i ⊗
( i∑
j=1

ej,j+n−i−1

)]

+

[
−

n−1∑
i=2

( i−1∑
j=1

ej,j+n−i

)
⊗ en,i +

n−2∑
i=1

h∗i ⊗ ei+1,i

+
n−1∑
i=3

( i−2∑
j=1

( j∑
k=1

ek,k+i−j−1

)
⊗ ei,j

)]

−
[
−

n−1∑
i=2

en,i ⊗
( i−1∑
j=1

ej,j+n−i

)

+
n−2∑
i=1

ei+1,i ⊗ h∗i +
n−1∑
i=3

( i−2∑
j=1

ei,j ⊗
( j∑
k=1

ek,k+i−j−1

))]
. (7.7)

To check the validity of the above equations, we produced two procedures

ratSolType1 and ratSolType2 whose outputs give the right-hand-side of

Equations (7.6) and (7.7) respectively. Note that we had to keep in mind

Remark 7.3.2 when producing these procedures, so there are certain sign

changes to ensure that the results are correct. The output of each of these

two procedures is in the form of a list which can be input directly into our

procedure for testing solutions to the CYBE. For example,

> def ratRing2par4=createRingRational2par("sl(4)");

> setring ratRing2par4;

> list L1=casimirZTest2par(4);

> list L2=ratSolType1(4);

> list L3=ratSolType2(4);

> list L=L1+L2;

> IsSolutionCYBE(L);

Is a solution to the CYBE

> L=L1+L3;

> IsSolutionCYBE(L);

Is a solution to the CYBE

>

There are also a number of procedures in ybe.lib designed to be used

if the value of an expression which is not a solution is required in LATEX
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format. The procedure texYBE converts the value of the left-hand-side of

the CYBE/AYBE to a LATEX format. This can be printed on screen or

saved to a user-named file. For example,

> IsSolutionCYBE(1,z 2-z 1,h,e,\
. z2,1,e,f);

Is not a solution to the CYBE

> string s=showValue();

> texYBE("",s);

prints the expression:

− 2

u1 · u2 − u1 · u3 − u2
2 + u2 · u3

h⊗ e⊗ e

− (2 · u1 · u2 − 2 · u2
2)

u1 · u2 − u1 · u3 − u2 · u3 + u2
3

e⊗ f ⊗ e

− (2 · u3)

u1 − u2

e⊗ e⊗ f − (u2 · u3)

1
e⊗ h⊗ f

− (u3)

u1 − u3

h⊗ e⊗ h+
u3

u2 − u3

e⊗ h⊗ h.

Using the solutions given in Chapters 5 and 6, we can test our program,

and achieve the following results:

Rational Solutions

> def ratRing=createRingRational("sl(2)");

> setring ratRing;

IsSolutionCYBE(1,2z,h,h,\
1,z,e,f,\
1,z,f,e);

Is a solution to the CYBE

(Note that this is Equation (5.9)).

> IsSolutionCYBE(1+z,4-4z,h,h,\
1,1-z,f,e,\
z,1-z,e,f);

Is a solution to the CYBE

Note that this is Equation (5.13)

> def ratRing5=createRingRational("sl(5)");

> setring ratRing5;

> IsSolutionCYBE(casimirZTest(5));
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Is a solution to the CYBE

(Note that this is a solution of type t
u
)

Rational Solutions with 2 parameters

> def ratRing2par=createRingRational("sl(2)");

> setring ratRing2par;

> IsSolutionCYBE(casimirZTest2par(2));

Is a solution to the CYBE

(Note that this is the solution t
u−v ).

> list L1=casimirZTest2par(2);

> list L2=-z 1,2,f,h,z2,2,h,f;

> list L=L1+L2;

> IsSolutionCYBE(L);

Is a solution to the CYBE

(Note that this is Equation (5.15))

> def ratRing2par5=createRingRational2par("sl(5)");

> setring ratRing2par5;

> list L1=casimirZTest2par(5);

> list L2=ratSolType1(5);

> list L=L1+L2;

> IsSolutionCYBE(L);

Is a solution to the CYBE

>

Trigonometric Solutions

> def trigRing=createRingTrig("sl(2)");

> setring trigRing;

> IsSolutionCYBE(cos,2*sin,h,h,\
1,sin,e,f,\
1,sin,f,e,\
sin,1,f,f);

Is a solution to the CYBE

(Note that this is Equation (5.16)).

> IsSolutionCYBE(1+cos+I*sin,4-4*cos-4*I*sin,h,h,\
1,1-cos-I*sin,f,e,\
cos+I*sin,1-cos-I*sin,e,f);
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Is a solution to the CYBE

(Note that this is Equation (5.17)).

Associative Solutions

> def assocRing2=createRingA2par(2);

> def assocRing3=createRingA3par(2);

> setring assocRing2;

> IsSolutionAYBE(1,2z,e 1 1,e 1 1,\
1,2z,e 1 1,e 2 2,\
1,2z,e 2 2,e 1 1,\
1,2z,e 2 2,e 2 2,\
1,w,e 1 1,e 1 1,\
1,w,e 2 2,e 2 2,\
1,w,e 1 2,e 2 1,\
1,w,e 2 1,e 1 2);

Is a solution to the AYBE

(Note that this is Equation (6.5)).

> setring assocRing3;

> IsSolutionAYBE(1,2z,e 1 1,e 1 1,\
1,2z,e 1 1,e 2 2,\
1,2z,e 2 2,e 1 1,\
1,2z,e 2 2,e 2 2,\
1,y 2-y 1,e 1 1,e 1 1,\
1,y 2-y 1,e 2 2,e 2 2,\
1,y 2-y 1,e 1 2,e 2 1,\
1,y 2-y 1,e 2 1,e 1 2,\
z-y 1,2,e 2 1,e 1 1,\
-z+y 1,2,e 2 1,e 2 2,\
z+y 2,2,e 1 1,e 2 1,\
-z-y 2,2,e 2 2,e 2 1,\
-z*(z-y 1)*(z+y 2),2,e 2 1,e 2 1);

Is a solution to the AYBE

(Note that this is Equation (6.3)).
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7.4 Implementation Issues

This section presents the main difficulties arising during the conception

and the implementation of ybe.lib. Several implementation issues were

faced and solved. A major problem we encountered was in mimicking

the tensor product between variables. The SINGULAR command for ten-

sor product tensor(A,B); returns the tensor product of the matrices A

and B. This is not suitable for our procedures as we do not need to

compute the value of tensor a ⊗ b ⊗ c, we only need the structure and

rules of triple tensors. We overcame this problem by creating a new inter-

nal ring to use for all calculations. In this ring we included the variables

Λ = {X(i) |X ∈ basis of L, i = 1, 2, 3}, that is for sl(2), the solution ring

is:

> def ratRing=createRingRational("sl(2)");

> ratRing;

characteristic : 0

2 parameter : u v

minpoly : 0

number of vars : 4

block 1 : ordering dp

: names e f h z

block 2 : ordering C

>

and the internal ring within which we work is:

> internalRing;

characteristic : 0

2 parameter : u v

minpoly : 0

number of vars : 13

block 1 : ordering dp

: names e f h e(1) f(1) h(1) e(2) f(2) h(2) e(3) f(3) h(3) z

block 2 : ordering C

>

The strategy we employed here is based on the following. We know

that the user inputs an expression r(z) ∈ L ⊗ L ⊂ U(L) ⊗ U(L), so our

ring which we create for the user must contain all basis elements of L.

Furthermore, even though r12(u), r13(u + v) and r23(v) are all elements of
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U(L) ⊗ U(L) ⊗ U(L), the Lie bracket of each of these elements with each

other is in L ⊗ L ⊗ L (Recall Example 3.2.9). If we let Π be the vector

subspace generated by the elements X(1) · Y (2) · Z(3) with X, Y, Z basis

elements in L, then as a vector space, L⊗ L⊗ L ∼= Π ⊂ C[Λ].

We then used the procedure MakeTensor to convert a list of three vari-

ables into a ’tensor product’. We did this by mapping each of the variables

to a variable of the same name but with a bracketed number indicating the

position it must take in the triple tensor. We then use the product of these

three variables. For example, the list f,e,h in sl(2) would be converted to

the polynomial f(1)*e(2)*h(3). The position of the new variables in the

variable string of our ring is important, we need all the variables with (1)

to come first, then all the variables with (2) and finally all the variables

with (3). This ensures that the polynomial will always have the variables

in chronological order. This method also overcame the problem of equating

e⊗ 2f ⊗ h = 2e⊗ f ⊗ h as the rules for product ensure that any coefficient

is moved to the front of the polynomial.

We also encountered several problems during the development of the pro-

cedure for trigonometric solutions. The biggest challenge was to implement

the trigonometric addition rules, cos(u + v) = cos(u) cos(v) − sin(u) sin(v)

and sin(u+v) = sin(u) cos(v)+cos(u) sin(v). We discovered that the easiest

and best way to solve the problem of the addition formulae was to create a

procedure called trigRules which substitutes an expression for cos(u+ v)

or sin(u + v) with the expression on the right hand side. In order for the

program to work properly, we also needed to have the procedure recognise

that cos(z)2 +sin(z)2 = 1, We implemented this rule by using the SINGULAR

command ringlist which allowed us to change the parts of a previously

defined ring. We simply added a quotient ideal sin(z)2+cos(z)2−1. We used

the same method to overcome the problem of having a complex variable I

in the ’trigonometric ring’. In SINGULAR, the ring definition for complex

variable ‘i’ does not allow the user to include any more parameters. Hence,

we needed to create the complex number ‘i’ as a variable I and add an ideal

to the internal ring Î 2 + 1. Similar to the case for the addition formulae for

sine and cosine, we needed to use this complex number in the denominator

of coefficients, so we had to substitute it for a parameter and then back to

a variable again when working with the numerator only.

We also came across some implementation challenges which we could

not solve. The first challenge was the need to define a ring and then set

this ring as the basering. The user must be informed of the requirement to

enter the command
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>setring [ringname];

Another problem that we failed to overcome was the programs inability to

give the value of the left-hand-side of the CYBE for trigonometric solutions.

When calculating trigonometric solutions we need to work in yet another in-

ternal ring to calculate the CYBE. As we have mentioned before, SINGULAR

does not allow the use of variables in the denominator, so we created a

new ring with the complex number ‘i’ and the sine and cosine functions

for u, v, and u + v as parameters. We could then substitute these param-

eters for the variables in the calculation. However, procedures defined in

SINGULAR must use the same ring for input and output, and the procedure

totalAllBrackets returns a polynomial, so it was impossible to give the

correct value for trigonometric solutions. We know that if an expression is

a solution to the CYBE then the coefficient of each triple tensor must be

zero. This happens only when the numerator of the coefficient is zero. So

for trigonometric expressions we look at the numerator of each coefficient

only and disregard the denominator.

7.5 Conclusion and Future Work

The main goal of this research was to develop a tool which enables the

user to perform lengthy calculations of the CYBE or the AYBE using a

computer program. The examples we have performed so far should produce

evidence enough that the program successfully calculates whether or not a

given expression is a solution to the CYBE or the AYBE. However, we have

also identified some problems and limitations. More specifically, the need

to have the user set the ring before computations can take place, and the

fact that this program cannot calculate the value of the left-hand-side of

the CYBE for trigonometric solutions.

In terms of future work, it is certainly worth experimenting on alterna-

tive methods of computation that would allow the user to see the value of

the left-hand-side of the trigonometric CYBE. Although the library ybe.lib

seems to produce promising results, there are still some aspects that should

be optimized: computations on larger dimensional Lie algebras take some

time. For the solution r(z) = t/z in sl(9) the procedure takes 13 minutes

and 31 seconds to give us a result (using SONY VAIO, AMD Athlon II

X2P320 processor, 4GB RAM).

> def ratRing=createRingRational("sl(9)");
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> setring ratRing;

> IsSolutionCYBE(casimirZTest(9));

Is a solution to the CYBE

Other directions of future work on the ybe.lib library may include a pro-

cedure for testing trigonometric solutions to the AYBE.
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Appendix A

The ybe.lib Source Code

%

info="

LIBRARY: ybe.lib

AUTHOR: Lisa Kierans

OVERVIEW:

A library for testing possible solutions to the classical Yang-Baxter %

equation of

type rational, rational with two parameters, and trigonometric, and the

associative Yang-Baxter equation of type 2 and 3 parameters. The library %

also

includes a procedure for converting the value of the left hand side of the %

YBE

for non-solutions to LaTeX format. We can also compute the Casimir operator %

for

sl(n) and can check our procedures for the CYBE using the Casimir test %

procedure.

PROCEDURES FOR CREATING REQUIRED RINGS:

createRingRational creates a ring from the Lie algebra entered with

additional parameter and variables.

createRingRational2par similar to rational except ring can handle two %

parameters

createRingTrig creates a ring from the Lie algebra entered with

additional parameters and trig. variables

createRingA2par creates a ring with 2 parameters and variables %

which are

matrix basis elements

createRingA3par creates a ring with 3 parameters and variables %

which are

125
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matrix basis elements

PROCEDURES FOR CYBE:

IsSolutionCYBE checks if entered list is a solution to CYBE

PROCEDURES FOR THE AYBE:

IssolutionAYBE checks if entered list is a solution to the AYBE

PROCEDURES FOR THE YBE:

texYBE converts the value of expressions that are not %

solutions

to LaTex format.

showValue shows the value of expressions that are not solutions.

PROCEDURES INVOLVING THE CASIMIR ELEMENT:

casimirZTest returns a list corresponding to the rational %

solution t/z,

where t is the Casimir element.

casimirZTest2par returns a list corresponding to the rational solution

t/(z_1-z_2), where t is the Casimir element.

casimirEl returns the Casimir element of some sl(n).

GENERAL PROCEDURES:

MakeLists

MakeTensor

NonCommutativePart

trigRules

totalAllBrackets

internalSolutionCYBE

parseCoefficient

matrixMult

commBracket

totalAYBE

dualBasis

KEYWORDS: Lie algebras, Classical Yang-Baxter Equation, Associative %

Yang-Baxter

Equation, Casimir element.

";

////////////////////////////////////////////////////////////////////////////////

LIB "ncalg.lib";

LIB "latex.lib";

////////////////////////////////////////////////////////////////////////////////
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////////////////////////////////////////////////////////////////////////////////

//PROCEDURES WHICH CREATE THE REQUIRED RING TO WORK IN FROM THE LIE ALGEBRA

////////////////////////////////////////////////////////////////////////////////

proc createRingRational(string LieAlg)

"USAGE: createRingRational("LieAlg");LieAlg is a string.

ASSUME: - LieAlg is one of the pre-defined noncommutative algebras from %

the

library ncalg.lib

- this is the Lie algebra which the possible solution is %

contained in.

RETURN: The ring which is inputted is exported to be used globally. A new

ring is returned. This new ring is similar to the non-commutative

ring entered but is a commutative ring with additional %

parameters ’u’

and ’v’. It also has a number of additional variables: each %

variable

from the original ring plus each of these variables with (1),(2) %

and

(3). The variable ’z’ is also added.

REMARK: The new ring is exported but cannot be set as the basering. The %

user

must do this in order to proceed to checking solutions to CYBE.

EXAMPLE: example createRingRational; shows an example."

{

def ratRing=internalnoncalg(1,LieAlg);

return(ratRing);

}

example

{

"EXAMPLE:";

echo=2;

def ratRing=createRingRational("sl(2)");

setring ratRing;

ratRing;

}

proc createRingRational2par(string LieAlg)

"USAGE: createRingRational2PAR("LieAlg");LieAlg is a string.

ASSUME: - LieAlg is one of the pre-defined noncommutative algebras from %

the

library ncalg.lib

- this is the Lie algebra which the possible solution is %

contained in.

RETURN: The ring which is inputted is exported to be used globally. A new

ring is returned. This new ring is similar to the non-commutative

ring entered but is a commutative ring with additional parameters

’u_1’, ’u_2’ and ’u_3’. It also has a number of additional %

variables:

each variable from the original ring plus each of these variables
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with (1),(2) and (3). The variables ’z_1’ and ’z_2’ are also %

added.

REMARK: The new ring is exported but cannot be set as the basering. The %

user

must do this in order to proceed to checking solutions to CYBE.

EXAMPLE: example createRingRational2par; shows an example."

{

def ratRing2par=internalnoncalg(2,LieAlg);

return(ratRing2par);

}

example

{

"EXAMPLE:";

echo=2;

def ratRing2par=createRingRational("sl(2)");

setring ratRing2par;

ratRing2par;

}

proc createRingTrig(string LieAlg)

"USAGE: createRingTrig("LieAlg");LieAlg is a string.

ASSUME: - LieAlg is one of the pre-defined noncommutative algebras from %

the

library ncalg.lib

- this is the Lie algebra which the possible solution is %

contained in.

RETURN: The ring which is inputted is exported to be used globally. A new

ring is returned. This new ring is similar to the non-commutative

ring entered but is a commutative ring with additional %

parameters ’u’

and ’v’. It also has a number of additional variables: each %

variable

from the original ring plus each of these variables with (1),(2) %

and

(3). The variables %

’z’,’cos’,’sin’,’cos_u’,’cos_v’,’sin_u’,’sin_v’

are also added.

REMARK: The new ring is exported but cannot be set as the basering. The %

user

must do this in order to proceed to checking solutions to CYBE.

EXAMPLE: example createRingTrig; shows an example."

{

def trigRing=internalnoncalg(3,LieAlg);

return(trigRing);

}

example

{

"EXAMPLE";

echo=2;

def trigRing=createRingTrig("sl(2)");

setring trigRing;

trigRing;
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}

//The following procedure is used in each case: Rational, Rational-2 %

parameter,

//and Trigonometric.

static proc internalnoncalg(int n,string LieAlg)

"USAGE: internalnoncalg(n,"LieAlg"); n is an integer, LieAlg is a string.

ASSUME: LieAlg is taken from the procedures createRingRational/

createRingRational2par/createRingTrig. ’n’ is 1 for rational

solutions, 2 for rational solutions with 2 parameters, or 3 for

trigonometric solutions.

RETURN: a new ring with the characteristic and variables of the

noncommutative ring entered along with several new characteristics

and variables which are necessary in order to carry out %

calculations.

NOTE: it is called from createRingRational,createRingRational2par, and

createRingTrig" .

{

if(defined(originalRing)==1){kill originalRing;}

//we must first define the ’original ring’ to be the %

noncommutative Lie

//algebra which was specified by the user.

execute("def originalRing=makeU"+LieAlg);

//for rational solutions:

if(n==1)

{

//a ring is created with two new characters and the list of variables

//created above, plus the variable ’z’ is required so that the user

//can input ’z’ when giving the expression to check, the ’u’ and ’v’

//are required as they will appear in the value of the CYBE.

execute("ring ringCreated=("+charstr(originalRing)+",u,v),("+varstr

(originalRing)+",z),("+ordstr(originalRing)+");");

}

//for rational solutions with two variables:

if(n==2)

{

//a ring is created with three new characters and the list of variables

//created above, plus ’z_1’ and ’z_2’. Again, ’z_1’ and ’z_2’ can be

//entered by the user, and ’u_1’,’u_2’ and ’u_3’ will be used in the

//output value.

execute("ring ringCreated=("+charstr(originalRing)+",u_1,u_2,u_3),("

+varstr(originalRing)+",z_1,z_2),("+ordstr(originalRing)+");");

}

//for trigonometric solutions:

if(n==3)

{

//a ring is created with two new characters along with additional

//variables ’z’,and the sine and cosine functions in ’z’, ’u’, and ’v’.

execute("ring ringCreated=("+charstr(originalRing)+",u,v),("+varstr

(originalRing)+",z,sin,cos,cos_u,sin_u,cos_v,sin_v,I),("+ordstr
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(originalRing)+");");

}

//we need to export the original ring so that we can call it in later

//procedures.

export(originalRing);

//we ring we have created is returned so that the user can then set this

//ring and check a possible solution which includes the new variables

//added.

return(ringCreated);

}

////////////////////////////////////////////////////////////////////////////

//PROCEDURES WHICH ARE USED TO CHECK SOLUTIONS

////////////////////////////////////////////////////////////////////////////

static proc MakeLists(list #)

"USAGE: MakeLists(#); # is a list.

ASSUME: # is divisable by 4, entries must follow the pattern numerator,

denominator, first component of tensor, second component of %

tensor.

RETURN: Four lists, a list of numerators, a list of denominators, a %

list of

the first components (a(i)) and a list of the second components

(b(i)).

NOTE: it is called from internalSolutionCYBE."

{

//define a counter and the lists to be returned.

int count=1; list num, den, a, b; int i;

//this loop goes through all entered data and groups it into four lists

for(i=1; i<=size(#); i=i+4)

{

num[count] =#[i];

den[count]=#[i+1];

a[count]=#[i+2];

b[count]=#[i+3];

count++;

}

return(num,den,a,b);

}

//we now need a procedure which incorporates the rules of the Lie bracket %

of two

//elements of L’tensor’L’tensor’L.

static proc MakeTensor(list Tensors,RING)

"USAGE: MakeTensor(a,b,c,RING); a,b,c are polynomials, RING is the %

basering.

ASSUME: input is 3 single variable from the variables entered by the %

user.

These are common to both the ring that the user sets to begin %

with,

and the internal ring used for calculations. That is, the %
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variables

without bracketed numbers.

RETURN: gives each element entered as a product but with first element %

+(1),

second element +(2) and third element +(3). For example

a(1)*b(2)*c(3).

NOTE: it is called from totalAllBrackets."

{

//create lists for first, second and third components of our ’tensor

//product’.

list firstComponent,secondComponent,thirdComponent; int i; int count=1;

//this for loop adds the correct variables to each list. We start our

//counting at the variable after the last variable common to both rings.

for(i=1; i<=nvars(originalRing); i=i+1)

{

//this list includes all the variables with (1):

firstComponent[count]=varstr(RING,(nvars(originalRing)+i));

//this list includes all the variables with (2):

secondComponent[count]=varstr(RING,((nvars(originalRing)*2)+i));

//this list includes all the variables with (3):

thirdComponent[count]=varstr(RING,((nvars(originalRing)*3)+i));

count++;

}

//we will now define three polynomials to be the three variables input

//into the procedure.

poly firstPolynomial=Tensors[1];

poly secondPolynomial=Tensors[2];

poly thirdPolynomial=Tensors[3];

//we use the command ’map’ to map the entered variables to the same

//variable but with a (1) on the first variable entered, a (2) on the

//second variable entered and a (3) on the third variable entered.

execute("map firstMap=RING,"+string(firstComponent)+";");

execute("map secondMap=RING,"+string(secondComponent)+";");

execute("map thirdMap=RING,"+string(thirdComponent)+";");

//we now return the product of these three new variables. Note that our

//ordering plays an important role as we need the bracketed numbers to

//ascend chronologically. This also ensures that any integer

//coefficient is placed in front of the three variables. This mimics the

//rules for tensor product.

return(firstMap(firstPolynomial)*secondMap(secondPolynomial)*thirdMap

%

(thirdPolynomial));

}

//the next procedure is where we make use of our noncommutative ring. We use

//this procedure to calculate the three Lie brackets of CYBE. We enter the

//elements of the tensors to be bracketed as a list of 4 variables.

static proc NonCommutativePart(poly a,poly b,poly c,poly d)

"USAGE: NonCommutativePart(a(i),b(i),a(j),b(j)); a(i) and b(i) are the

elements of the first tensor and a(j) and b(j) are the elements %

from
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the second tensor.

ASSUME: variables entered are single variables from those common to both

rings.

RETURN: returns a list of 3 lists with 3 elements in each list. List 1 %

has:

[a(i),a(j)],b(i),b(j). List 2 has: a(i),[b(i),a(j)],b(j). List 3

has: a(i),a(j),[b(i),b(j)].

NOTE: it is called from totalAllBrackets."

{

//define our basering with a name to be used in the procedure.

def SolRing=basering;

//create a list from the inputted variables.

list INPUT=a,b,c,d;

//now change to basering to the noncommutative ring exported from

//earlier procedure.

setring originalRing;

//then we create a list which maps each of the entered variables to the

//same variable in the original ring.(Recall that variables entered must

//be from those common to both rings).

list L=imap(SolRing,INPUT);

poly LieBracket; list A1213, A1223, A1323;

//the bracket command in Singular computes the Lie bracket between two

//variables.

LieBracket=bracket(L[1],L[3]);

//we now create a list of three elements based on the fact that

//[(a’tensor’b)^(12),(c’tensor’d)^(13)]=[a,c]’tensor’b’tensor’d

A1213=LieBracket,L[2],L[4];

LieBracket=bracket(L[2],L[3]);

//similarly, we create a list of three elements for the second bracket

//of CYBE: [(a’tensor’b)^(12),(c’tensor’d)^(23)]=a’tensor’[b,c]’tensor’d

A1223=L[1],LieBracket,L[4];

LieBracket=bracket(L[2],L[4]);

//we alse create a list of three elements for the third bracket of CYBE:

//[(a’tensor’b)^(13),(c’tensor’d)^(23)]=a’tensor’c’tensor’[b,d]

A1323=L[1],L[3],LieBracket;

//we must change back to the commutative ring as we need to return

//values in the same ring from which they were entered.

setring SolRing;

list result;

//we will create a list of lists to map our results to the commutative

//ring.

result[1]=imap(originalRing,A1213);

result[2]=imap(originalRing,A1223);

result[3]=imap(originalRing,A1323);

//we return a list of three lists.

return(result);

}

//we now need to create a procedure that can cope with the rules required for

//trigonometric solutions. The identities: %

sin(u+v)=sin(u)*cos(v)+cos(u)*sin(v)

//and cos(u+v)=cos(u)*cos(v)-sin(u)*sin(v) are incorporated using this %

procedure.
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//We also overcome the problem of having variables in the denominator here.

static proc trigRules(poly Total)

"USAGE: trigRules(Total); Total a polynomial.

ASSUME: Total is a polynomial from the procedure totalAllBrackets in the

temporary trigonometric ring set up there.

RETURN: A polynomial incorporating the trigonometric addition formulae.

REMARK: The returned polynomial is not the correct value for the

trigonometric CYBE as we have to disregard the denominator of %

each

coefficient for the procedure to work.

NOTE: it is called from totalAllBrackets."

{

//introduce necessary variables.

int i; number Numerat; poly trigVariables=0; poly trig,reducetrig;

//we create a loop which takes each element of the polynomial entered

//one-by-one

for(i=1; i<=size(Total); i++)

{

//define the numerator of the coefficient of the first term in the

//polynomial ’Total’

Numerat=numerator(leadcoef(Total));

//then take this numerator and substitute for the parameters, the

//correct variables but incorporating the addition formulae for sine

//and cosine.

trig=subst(Numerat,cu,cos_u,cv,cos_v,su,sin_u,sv,sin_v,sadd,

%

(sin_u*cos_v+cos_u*sin_v),cadd,(cos_u*cos_v-sin_u*sin_v),complexi,I);

//the SINGULAR command ’reduce’ reduces the polynomial ’trig’ to its

//normal form with respect to the ideal representing the trigonometric

//rule sin^2+cos^2=1.

reducetrig=reduce(trig,std(0));

//create a new polynomial, the addition of these elements.

trigVariables=trigVariables+reducetrig*leadmonom(Total);

//subtract the leading term from the polynomial ’Total’ so that we can

//now work on the next term, i.e. the new leading term.

Total=Total-lead(Total);

}

//what is returned is the polynomial entered disregarding all denominators

//and incorporating all trigonometric rules which apply.

return(trigVariables);

}

static proc totalAllBrackets(int TYPE, list Num, list Den, list A, list B)

"USAGE: totalAllBrackets(TYPE,Num,Den,A,B); TYPE is a number; Num,Den,A,B

are lists.

ASSUME: TYPE can be 1,2 or 3 depending on ring. Num is the list of

numerators for each tensor, Den is the list of denominators for %

each

tensor, A is the list of first tensor elements and B is the %

list of

second tensor elements.

RETURN: The value of the CYBE is returned.
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NOTE: it is called from internalSolCYBE."

{

//create a list of the lists entered.

list INPUT=Num,Den,A,B;

//if we are working in the Trigonometric ring, we need to work in a ring %

where

//sin,cos,sin(u+v) and cos(u+v) are parameters so they can be part of the

//denominator of coefficients.

if(TYPE==3)

{

//the SINGULAR procedure ’ringlist’ creates a list of all the rings

//properties.

list baseRing=ringlist(internalRing);

//the first object in this list, _[1], is the characteristic of the

//ring. We need to change this to have additional parameters

//symbolising cos(u),cos(v),sin(u),sin(v),sin(u+v) and cos(u+v).

baseRing[1]=list(0,list("u","v","cu","cv","su","sv","sadd","cadd",

%

"complexi"),list(list("lp",1)),ideal(0));

//define a temporary trigonometric ring to have this new character

//string.

def tempTrigRing=ring(baseRing);

setring tempTrigRing;

//we must now incorporate the formulas for cos^2+sin^2 as an ideal

//in this temporary ring.

ideal trigRule=sin_u^2+cos_u^2-1,sin_v^2+cos_v^2-1, I^2+1;

//and now define our ’solution ring’ to be the quotient ring of the

//temporary ring modulo the ideal ’trigRule’.

qring SolRing=std(trigRule);

}

//if we are not working in the trigonometric ring then we define the

//ring to be called ’SolRing’ so we can continue using one ring name for

// all original ring types.

else{def SolRing=internalRing;}

setring SolRing;

//introduce necessary variables.

int i,j; poly r12r13,r12r23,r13r23,numer1,denom1,numer2,denom2, Total;

poly T1=0; poly T2=0; poly T3=0; list Tensors, INPUT1,num,den,a,b;

//we have changed rings within the procedure so we need to map our

//input to this new ring.

INPUT1=imap(internalRing,INPUT);

num=INPUT1[1]; den=INPUT1[2]; a=INPUT1[3]; b=INPUT1[4];

//we now create two loops that will go through all combinations of pairs

//of tensors (a(i),b(i),a(j),b(j)).

for(i=1; i<=size(a); i=i+1)

{

for(j=1; j<=size(a); j=j+1)

{

//define polynomials to be each element in the list of

//numerators and denominators.

numer1=num[i]; denom1=den[i]; numer2=num[j]; denom2=den[j];

//this list gives the three variables computed from the first
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//Lie bracket of the CYBE.

Tensors=NonCommutativePart(a[i],b[i],a[j],b[j])[1];

//this list makes these variables into a ’tensor product’.

r12r13=MakeTensor(Tensors,SolRing);

//if we are working in a rational ring:

if(TYPE==1)

{

//we multiply by the coefficient of each tensor,

//substituting ’u’ for ’z’ in the first tensor, and ’u+v’

//for ’z’ in the second tensor.

r12r13=r12r13*(subst(numer1,z,u)/subst(denom1,z,u))*

(subst(numer2,z,u+v)/subst(denom2,z,u+v));

}

//if we are working in a 2 parameter rational ring:

if(TYPE==2)

{

//we multiply by the coefficient of each tensor,

//substituting ’u_1’ for ’z_1’ and ’u_2’ for ’z_2’ in the first

//tensor, and ’u_1’ for ’z_1’ and ’u_3’ for ’z_2’ in the second

//tensor.

r12r13=r12r13*(subst(numer1,z_1,u_1,z_2,u_2)/subst

(denom1,z_1,u_1,z_2,u_2))*(subst(numer2,z_1,u_1,z_2,u_3)

/subst(denom2,z_1,u_1,z_2,u_3));

}

//if we are working in a trigonometric ring:

if(TYPE==3)

{

//we multiply by the coefficient of each tensor, substituting

//’u’ for ’z’,cos and sin of ’u’ for cos and sin in the first

//tensor, and ’u+v’ for ’z’, cos and sin of (u+v) for cos and

//sin in the second tensor.

r12r13=r12r13*(subst(numer1,z,u,cos,cu,sin,su,I,complexi)

%

/subst(denom1,z,u,cos,cu,sin,su,I,complexi))*(subst(numer2,z,u+v,cos,cadd,sin,

%

sadd,I,complexi)/subst(denom2,z,u+v,cos,cadd,sin,sadd,I,complexi));

}

//this polynomial is the addition of all elements of the first

//bracket of the CYBE.

T1=T1+r12r13;

//similarly, we calculate the second bracket of the CYBE.

Tensors=NonCommutativePart(a[i],b[i],a[j],b[j])[2];

r12r23=MakeTensor(Tensors,SolRing);

if(TYPE==1)

{

r12r23=r12r23*(subst(numer1,z,u)/subst(denom1,z,u))*

(subst(numer2,z,v)/subst(denom2,z,v));

}

if(TYPE==2)

{

r12r23=r12r23*(subst(numer1,z_1,u_1,z_2,u_2)/subst(denom1,z_1,

%
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u_1,z_2,u_2))*(subst(numer2,z_1,u_2,z_2,u_3)/subst(denom2,z_1,u_2,z_2,u_3));

}

if(TYPE==3)

{

r12r23=r12r23*(subst(numer1,z,u,cos,cu,sin,su,I,complexi)

%

/subst(denom1,z,u,cos,cu,sin,su,I,complexi))*(subst(numer2,z,v,cos,cv,sin,

%

sv,I,complexi)/subst(denom2,z,v,cos,cv,sin,sv,I,complexi));

}

//this polynomial is the addition of all elements of the second

//bracket of the CYBE

T2=T2+r12r23;

//we use the same method to obtain the third bracket of the

//CYBE

Tensors=NonCommutativePart(a[i],b[i],a[j],b[j])[3];

r13r23=MakeTensor(Tensors,SolRing);

if(TYPE==1)

{

r13r23=r13r23*(subst(numer1,z,u+v)/subst(denom1,z,u+v))*

%

(subst(numer2,z,v)/subst(denom2,z,v));

}

if(TYPE==2)

{

r13r23=r13r23*(subst(numer1,z_1,u_1,z_2,u_3)/subst(denom1,z_1,

%

u_1,z_2,u_3))*(subst(numer2,z_1,u_2,z_2,u_3)/subst(denom2,z_1,u_2,z_2,u_3));

}

if(TYPE==3)

{

r13r23=r13r23*(subst(numer1,z,u+v,cos,cadd,sin,sadd,I,

complexi)/subst(denom1,z,u+v,cos,cadd,sin,sadd,I,complexi))*(subst(numer2,z,v, %

%

cos,cv,sin,sv,I,complexi)/subst(denom2,z,v,cos,cv,sin,sv,I,complexi));

}

//this polynomial is the addition of all elements of the second

//bracket of the CYBE

T3=T3+r13r23;

}

}

//this polynomial is the total value of the CYBE for the expression

//entered by the user.

Total=T1+T2+T3;

//we must now incorporate the trigonometric rules for sin(u+v) and

//cos(u+v) using the procedure trigRules.

if(TYPE==3)

{

Total=trigRules(Total);

}

//we need to return a value in the original basering defined at the %

beginning
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//of the procedure.

setring internalRing;

//and map the total value to a polynomial in this ring

poly TOTAL=imap(SolRing,Total);

return(TOTAL);

}

//////////////////////////////////////////////////////////////////////////////

//PROCEDURES FOR THE CYBE

//////////////////////////////////////////////////////////////////////////////

static proc internalSolutionCYBE(int TYPE, list #)

"USAGE: internalSolutionCYBE(TYPE,#); TYPE is a number, # is a list.

ASSUME: TYPE is 1,2 or 3 depending on the type of ring we are working %

in. #

is the list of the possible solution to be checked in the format:

numerator,denominator, first tensor,second tensor.

RETURN: a string of text which tells the user whether the inputted %

variables

are a solution to the CYBE or not. IF the expression is not a

solution to the CYBE, then the value is exported.

NOTE: it is called from IsSolutionCYBE."

{

//because we need to export ’internalRing’,’lhsOfEquation’, we must %

undefine

//them if they are already defined in order to avoid SINGULAR printing a

//message "redefining ..."

if(defined(internalRing)==1){kill internalRing; }

if(defined(lhsOfEquation)==1){kill lhsOfEquation; }

//we first need to create a ring to be used internally. This ring will %

make it

//possible to mimic the rules of tensor product of Lie algebras.

//we will create a list of new variables from the variables of the

//original ring. This list ’new_vars’ will be the variable list for %

our

//new internal ring.

list new_vars; int count=1;int i,j;

//this loop runs through each variable from the original noncommutatuve

//ring and adds it to the list first (n variables).

for(i=1; i<=nvars(originalRing); i=i+1)

{

//the SINGULAR procedure ’varstr’ gives the name of the i-th

//ring variable

new_vars[count]=varstr(originalRing,i);

count++;

}

//we now need two ’for’ loops to add 3n new variables made from each of

//the original variables with a (1),(2), and (3) added to each one. The

//first loop orders the variables correctly for use in preceeding

//procedures.

for(j=1; j<=3; j++)

{
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for(i=1; i<=nvars(originalRing); i++)

{

new_vars[count]=varstr(originalRing,i)+"("+string(j)+")";

count++;

}

}

//we now need to make four lists out of the variables entered by the

//user to separate the numerator, denominator, 1st tensor, and 2nd tensor

list listOfPossibleSol=MakeLists(#);

//define the basering as ’SolutionRing’. This will be the ring any

//output is given in and has the same name for each solution type.

def SolutionRing=basering;

//use the SINGULAR command ’ringlist’ to create a list of the rings

//properties.

list newRing=ringlist(SolutionRing);

//we now use a ’for’ loop to add all the new variables created above to this

//SolutionRing.

for(i=1; i<=size(new_vars); i=i+1)

{

newRing[2][i]=new_vars[i];

}

//if we are working in the rational ring add only the variable ’z’ again.

if(TYPE==1){ list extraVars=z;}

//if we are working in the 2 parameter rational ring, we must create a list

//with the appropriate variables to add them to our new ring.

if(TYPE==2){ list extraVars=z_1,z_2;}

//if we are working in the trigonometric ring, we must add the %

appropriate variables

if(TYPE==3){ list extraVars=z,sin,cos,sin_u,cos_u,sin_v,cos_v,I;}

newRing[2]=newRing[2]+extraVars;

//rename this new ring ’internalRing’. It will be used for all internal

//calculations

def internalRing=ring(newRing);

setring internalRing;

list listOfPossibleSolution=imap(SolutionRing,listOfPossibleSol);

//we need to export this internal ring so that it is defined globally and %

can be called in any

//internal procedure.

export(internalRing);

//the polynomial ’TOTAL’ is the value of the CYBE.

poly TOTAL=totalAllBrackets(TYPE,listOfPossibleSolution[1],

listOfPossibleSolution[2],listOfPossibleSolution[3],listOfPossibleSolution[4]);

//if the expression that was checked is a solution to the CYBE

if(TOTAL==0)

{

//we must change back to our solution ring before we can return %

anything.

setring SolutionRing;

return("Is a solution to the CYBE");

}

//if the expression that was checked is not a solution to the CYBE
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else

{

//save the size of the polynomial ’TOTAL’.

def p=size(TOTAL);

//save the number of variables in the original (non-commutative) ring.

def b=nvars(originalRing);

//create several objects which are lists of integers

intvec T,tensor1,tensor2,tensor3; count=1;

//we need a loop that continues until the polynomial TOTAL is equal to %

zero.

while(TOTAL<>0)

{

//the SINGULAR command ’leadexp’ returns the exponent vector of the %

leading

//monomial of a polynomial. The result of the following command will %

be a

//vector of size 4b (b is from above). This vector will have 1’s %

where the

//first, second and third tensors are found.

T=leadexp(TOTAL);

//to find the first tensor, we look at the vector given by the %

elements of

//the variable string with a (1) added.

tensor1=T[(b+1)..2*b];

//to find the second tensor, we look at the vector given by the %

elements of

//the variable string with a (2) added.

tensor2=T[(2*b+1)..3*b];

//to find the third tensor, we look at the vector given by the %

elements of

//the variable string with a (3) added.

tensor3=T[(3*b+1)..4*b];

//we now create a number of lists. Each list will have numerator, %

denominator,

//tensor1, tensor2, and tensor3 from each term of the polynomial %

TOTAL. The

//tensors will be from the original list (i.e. without brackets).

//The SINGULAR command ’monomial’ effectively reverses the command %

’leadexp’.

//What we have done here is factorised the polynomial TOTAL into lists.

execute("list Factorised(count)=numerator(leadcoef(TOTAL)),

denominator(leadcoef(TOTAL)),"

+string(monomial(tensor1))+","

+string(monomial(tensor2))+","

+string(monomial(tensor3))+";");

count++;

//we need to subtract the leading term from TOTAL.

TOTAL=TOTAL-lead(TOTAL);

}

//so that we can return values, we need to convert back to the Solution %
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ring

setring SolutionRing;

//we define a string to hold the value of non-solutions

string lhsOfEquation="";

//we cannot return values of trigonometric expressions

if(TYPE==3)

{

lhsOfEquation=lhsOfEquation+"Cannot return the value of

trigonometric %

expressions";

}

else

{

//we need a ’for’ loop that is the size of the polynomial TOTAL.

//This is the same as the number of lists defined above called

//’Factorised(i)’

for(i=1; i<=number(p); i=i+1)

{

//we need to undefine the lists ’solInputRing(i)’ if they have

//been previously defined to avoid getting a message from

//SINGULAR "redefining ..."

if(defined(solInInputRing(i))==1){kill solInInputRing(i);}

//create a number of lists which map the lists defined above

//to the solution ring

list solInInputRing(i)=imap(internalRing,Factorised(i));

export(solInInputRing(i));

//the value of the non-solution is made into a string. It is

//in the format: numerator, denominator, tensor1, tensor2,

//tensor3, [linebreak] etc.

lhsOfEquation=lhsOfEquation+string(solInInputRing(i))+newline;

}

}

//this string is then exported to be used in the procedure %

’showValue’

export(lhsOfEquation);

return("Is not a solution to the CYBE");

}

}

proc IsSolutionCYBE(list #)

"USAGE: IsSolutionCYBE(#); # is a list.

ASSUME: # is the list of the possible solution to be checked in the %

format:

numerator,denominator, first tensor,second tensor. The %

elements of

this list are from the basering created.

RETURN: a string of text which tells the user whether the inputted %

variables

are a solution to the CYBE or not. If the expression is not a

solution to the CYBE, if the expression is not a solution, then %

the

value is exported.
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EXAMPLE: example IsSolutionCYBE; shows an example."

{

//the input must be grouped into lists of size 4.

if(size(#)%4!=0){ERROR("The input must be a list entered as: numerator,

denominator,variable1,variable2. See help YBE for more %

information");}

else

{

int TYPE=1;

if(find(varstr(basering),"z_1")){TYPE=2;}

if(find(varstr(basering),"sin")){TYPE=3;}

//create a list of the list entered. We need to have a name for this

//list so it can be used in the procedure ’internalSolutionAYBE’.

list SOL=#;

return(internalSolutionCYBE(TYPE,SOL));

}

}

example

{

"EXAMPLE:";

echo=2;

def ratRing=createRingRational("sl(2)");

setring ratRing;

IsSolutionCYBE(1,z,e,f,\

1,z,f,e,\

1,z,1/2h,h);

def trigRing=createRingTrig("sl(2)");

setring trigRing;

IsSolutionCYBE(cos,2*sin,h,h,\

1,sin,e,f,\

1,sin,f,e,\

sin,1,f,f);

}

//////////////////////////////////////////////////////////////////////////////

//PROCEDURES FOR THE AYBE

//////////////////////////////////////////////////////////////////////////////

//this procedure creates a ring with variables e_1_1,....e_1_n,.....e_n_n + %

each

//variable with (1),(2),and(3) as in previous procedures

proc createRingA3par(int sqrtDim)

"USAGE: createRingA3par(sqrtDim); sqrtDim is an integer.

ASSUME: n^2 is the dimension of the ring to be created.

RETURN: a ring is returned with variables: the (n x n) basis elements; %

z, y_1,

y_2, plus the parameters: u; v; x_1; x_2; x_3.

REMARK: The new ring is exported but cannot be set as the basering. The

user must do this in order to proceed to checking solutions to %

AYBE.

EXAMPLE: example createRingA3par; shows an example."
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{

def assocRing3par=internalAssocRing(1,sqrtDim);

return(assocRing3par);

}

example

{

"EXAMPLE:"; echo=2;

def assocRing3=createRingA3par(3);

setring assocRing3;

assocRing3;

}

proc createRingA2par(int sqrtDim)

"USAGE: createRingA2par(sqrtDim); sqrtDim is an integer.

ASSUME: n^2 is the dimension of the ring to be created.

RETURN: a ring is returned with the variables:(n x n) basis elements; %

z,w,

plus the parameters: u; v; x; y.

REMARK: The new ring is exported but cannot be set as the basering. The

user must do this in order to proceed to checking solutions to %

AYBE.

EXAMPLE: example createRingA2par; shows an example."

{

def assocRing2par=internalAssocRing(2,sqrtDim);

return(assocRing2par);

}

example

{

"EXAMPLE:"; echo=2;

def assocRing2=createRingA2par(3);

setring assocRing2;

assocRing2;

}

static proc internalAssocRing(int n, int sqrtDim)

"USAGE: internalAssocRing(n,sqrtDim); n and sqrtDim are integers.

ASSUME: sqrtDim is taken from the procedures %

createRingA2par/createRingA3par

n is 1 for 3 parametric associative solutions, 2 is for 2 %

parametric

associative solutions.

RETURN: a new ring with several new characteristics and variables which %

are

necessary in order to carry out calculations.

NOTE: it is called from createRingA2par and createRingA3par" .

{

//because we export the original ring and the value ’n’ we need to

//undefine it (if defined) at the beginning of the procedure.

if(defined(dimension)==1){kill dimension;}

if(defined(originalRing)==1){kill originalRing;}

//we make provisions for entering an integer <=1.
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if(sqrtDim<2)

{

print("incorrect input");

return(0);

}

//introduce necessary variables.

int i,j; string originalVariables="";

//we need to create a string with (n x n) variables to become our

//variable list.

for(i=1; i<=sqrtDim; i++)

{

for(j=1; j<=sqrtDim; j++)

{

//if this is not the first element of the variable list, we

//add a comma.

if(originalVariables!="")

{

originalVariables= originalVariables + ", ";

}

//add each element of our variable string

originalVariables=originalVariables + "e_"+string(i)+"_"

%

+string(j);

}

}

// define original ring as ring with char 0 and variables from string

//created above

execute("ring originalRing=(0),("+originalVariables+"),dp;");

execute("ring assocRing2par=(0,u,v,x,y),("+originalVariables+",z,w),dp;"

%

);

execute("ring assocRing3par=(0,u,v,x_1,x_2,x_3), ("+originalVariables+",z,

%

y_1,y_2),dp;");

//we export the original ring and the value of ’n’ to be used globally,

//and return this new ring .

export(originalRing);

int dimension=sqrtDim;

export(dimension);

if(n==1){return(assocRing3par); }

if(n==2){return(assocRing2par); }

}

static proc matrixMult

"USAGE: matrixMult(e_r_s,e_k_l); e_r_s and e_k_l are polynomials, n is an

integer.

ASSUME: e_r_s and e_k_l are single variable polynomials, which are basis

elements of the

associative algebra we are working in.’n’ is globally defined %

in the

procedure createRingAYBE.

RETURN: returns the value of the two matrices multiplied.
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NOTE: called from procedure commBracket."

{

poly matrixmult; int %

variablePosition_1,variablePosition_2,S,L,r,s,k,l;

//we use the position of each variable in the ring’s variable %

string to

//determine its value.

variablePosition_1=rvar(#[1]);

//the value of ’s’ is the remainder on division by ’n’.

S=variablePosition_1%dimension;

//if the remainder is zero then the value of ’s’ is equal to ’n’.

if(S==0){s=dimension;}

//otherwise

else {s=S;}

//the value of ’r’ is found using the following formula:

r=(variablePosition_1-s)/dimension + 1;

//we now use the position of the second variable to find its value.

variablePosition_2=rvar(#[2]);

L=variablePosition_2%dimension;

if(L==0){l=dimension;}

else {l=L;}

//the following formula gives us the value of ’k’

k=(variablePosition_2-l)/dimension + 1;

//using the rules of matrix multiplication, we know that e_r_s*e_k_l=

//e_r_l IF s=k

if(s==k)

{

execute("matrixmult = e_"+string(r)+"_"+string(l)+";");

}

// otherwise the value is zero

else

{

matrixmult = 0;

}

//we return this polynomial.

return(matrixmult);

}

static proc commBracket(poly a,poly b,poly c,poly d)

"USAGE: commBracket(a(i),b(i),a(j),b(j)); a(i) and b(i) are elements of %

the

first tensor and a(j) and b(j) are elements of the second tensor.

ASSUME: variables entered are single variables from those common to both

rings.

RETURN: returns a list of three lists with three elements in each list. %

List

1 has a(i)*a(j), b(i),b(j). List 2 has a(i),b(i)*a(j),b(j). List 3

has a(i),a(j),b(i)*b(j).

NOTE: it is called from totalAYBE."

{

list A1223, A1312, A2313; poly MM;

//we work out the first bracket of the AYBE



145

MM=matrixMult(b,c);

A1223=a,MM,d;

//then the second bracket of the AYBE

MM=matrixMult(a,c);

A1312=MM,d,b;

//then the third bracket of the AYBE

MM=matrixMult(b,d);

A2313=c,a,MM;

list result;

result[1]=A1223;

result[2]=A1312;

result[3]=A2313;

return(result);

}

static proc totalAYBE(int TYPE, list num,list den,list a, list b)

"USAGE: totalAYBE(TYPE,num,den,a,b); TYPE is a number; num, den, a and b

are all lists.

ASSUME: TYPE can be 1 or 2 depending on the ring we are working in. %

num is

the list of numerators, den is the list of denominators, a and %

b are

the tensors. Input is from the procedure makeLists.

RETURN: the value of the AYBE is returned.

NOTE: it is called from internalAYBE."

{

//as the procedure makeTensor uses a ring in the input, we must %

define

//our basering def solRing=internalRing;

//introduce necessary variables.

int i,j; poly r12r23,r13r12,r23r13,numer1,denom1,numer2,denom2, Total;

poly T1=0; poly T2=0; poly T3=0;list Tensors;

//we will now create two loops that will go through all the combinations

//of pairs of tensors.

for(i=1; i<=size(a); i=i+1)

{

for(j=1; j<=size(a); j=j+1)

{

//set the numerator and denominator for each loop.

numer1=num[i]; denom1=den[i]; numer2=num[j];

denom2=den[j];

//this list gives the three variables computed from the

//first bracket of the AYBE.

Tensors=commBracket(a[i],b[i],a[j],b[j])[1];

r12r23=MakeTensor(Tensors,internalRing);

//if we are working in a 3 parameter ring:

if(TYPE==1)

{

r12r23=r12r23*(subst(numer1,z,u,y_1,x_1,y_2,x_2)/subst

%

(denom1,z,u,y_1,x_1,y_2,x_2))*(subst(numer2,z,u+v,y_1,x_2,y_2,x_3)/subst

%
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(denom2,z,u+v,y_1,x_2,y_2,x_3));

}

//if we are working in a 2 parameter ring

if(TYPE==2)

{

r12r23=r12r23*(subst(numer1,z,u,w,x)/subst(denom1,z,

%

u,w,x))*(subst(numer2,z,u+v,w,y)/subst(denom2,z,u+v,w,y));

}

T1=T1+r12r23;

Tensors=commBracket(a[i],b[i],a[j],b[j])[2];

//this list makes the variables into a tensor product

//format.

r13r12=MakeTensor(Tensors,internalRing);

//if we are working in a 3 parameter associative ring:

if(TYPE==1)

{

//we multiply by the coefficient of each tensor with

//appropriate substitution.

r13r12=r13r12*(subst(numer1,z,u+v,y_1,x_1,y_2,x_3)/

%

subst(denom1,z,u+v,y_1,x_1,y_2,x_3))*(subst(numer2,z,-v,y_1,x_1,y_2,x_2)/subst(

%

denom2,z,-v,y_1,x_1,y_2,x_2));

}

//if we are working in a 2 parameter associative ring:

if(TYPE==2)

{

//we multiply by the coefficient of each tensor with

//appropriate substitution.

r13r12=r13r12*(subst(numer1,z,u+v,w,x+y)/subst

%

(denom1,z,u+v,w,x+y))*(subst(numer2,z,-v,w,x)/subst(denom2,z,-v,w,x));

}

//the polynomial T1 is the addition of all elements of

//the first bracket of the AYBE

T2=T2+r13r12;

//Similarly, we find the value of the second bracket of

//the AYBE and the value of the third bracket of the AYBE

Tensors=commBracket(a[i],b[i],a[j],b[j])[3];

r23r13=MakeTensor(Tensors,internalRing);

if(TYPE==1)

{

r23r13=r23r13*(subst(numer1,z,v,y_1,x_2,y_2,x_3)/subst

%

(denom1,z,v,y_1,x_2,y_2,x_3))*(subst(numer2,z,u,y_1,x_1,y_2,x_3)/subst(

%

denom2,z,u,y_1,x_1,y_2,x_3));

}

if(TYPE==2)

{

r23r13=r23r13*(subst(numer1,z,v,w,y)/subst(denom1,z,
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%

v,w,y))*(subst(numer2,z,u,w,x+y)/subst(denom2,z,u,w,x+y));

}

T3=T3+r23r13;

}

}

//we add the above three polynomials together to give us the total value

//of the AYBE

Total=T1-T2-T3;

return(Total);

}

static proc internalSolutionAYBE(int TYPE, list #)

"USAGE: internalSolutionAYBE(TYPE,#); TYPE is a number, # is a list.

ASSUME: TYPE is either 1 or 2 depending on the type of ring we are %

working

in. # is the list of the possible solution in the format: %

numerator,

denominator tensor1, tensor2. The elements of this list are from

the variable list of the associative ring created.

RETURN: a string of text which tells the user whether or not the %

expression

entered as a list is a solution to the AYBE. If the expression %

is

not a solution, then the value of the LHS of the AYBE is %

exported.

NOTE: it is called from IsSolutionAYBE."

{

//as we export ’lhsOfEquation’ and ’internalRing’, we must undefine them, %

if

//defined, at the beginning of the procedure:

if(defined(lhsOfEquation)==1){kill lhsOfEquation; }

if(defined(internalRing)==1){kill internalRing;}

//we first need to create a ring to be used internally. This ring %

will

//make it possible to mimic the rules of tensor product of algebras.

//we will create a list of new variables from the variables of the

//original ring . This list ’new_vars’ will be the variable list for

//our new internal ring.

list new_vars; int count=1;int i,j;

//this loop runs through each variable from the original ring and adds

//it to the list first.

for(i=1; i<=nvars(originalRing); i=i+1)

{

//the SINGULAR procedure ’varstr’ gives the name of the i-th ring

//variable

new_vars[count]=varstr(originalRing,i);

count++;

}

//we now need two ’for’ loops to add 3n new variables made from %

each of
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//the original variables with a (1),(2), and (3) added to each one. The

//first loop orders the variables correctly for use in preceeding

//procedures.

for(j=1; j<=3; j++)

{

for(i=1; i<=nvars(originalRing); i++)

{

new_vars[count]=varstr(originalRing,i)+"("+string(j)+")";

count++;

}

}

//we now define a new ring to be used internally with the basis elements

// plus each one with a (1),(2) or (3) added.

//we now need to make four lists out of the variables entered by the user

//to separate the numerator, denominator, 1st tensor, and 2nd tensor

list listOfPossibleSol=MakeLists(#);

//define the basering as ’SolutionRing’. This will be the ring any

//output is given in and has the same name for each solution type.

def SolutionRing=basering;

//create a list of the properties of this list.

list newRing=ringlist(SolutionRing);

//use a ’for’ loop to add all the new variables created above to this

//SolutionRing

for(i=1; i<=size(new_vars); i=i+1)

{

newRing[2][i]=new_vars[i];

}

//now add additional variables again

//if we are working in 3 parameter associative ring:

if(TYPE==1){ list extraVars=z,y_1,y_2;}

if(TYPE==2){ list extraVars=z,w;}

newRing[2]=newRing[2]+extraVars;

//we will call this ring ’internalRing’ so that the ring name is

//universal to each of the solution types.

def internalRing=ring(newRing);

setring internalRing;

//map our user-inputted list to this new ring

list listOfPossibleSolution=imap(SolutionRing,listOfPossibleSol);

export(internalRing);

//the polynomial ’TOTAL’ is the value of the AYBE.

poly TOTAL=totalAYBE(TYPE,listOfPossibleSolution[1],

listOfPossibleSolution[2],listOfPossibleSolution[3],listOfPossibleSolution[4]);

//if the expression checked is a solution to the AYBE

if(TOTAL==0)

{

setring SolutionRing;

return("Is a solution to the AYBE");

}

//if the expression checked is not a solution to the AYBE

else

{

//save the size of the polynomial ’TOTAL’.
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def p=size(TOTAL);

//save the number of variables in the original ring.

def b=dimension*dimension;

//create several objects which are lists of integers

intvec T,tensor1,tensor2,tensor3; count=1;

//we need a loop that continues until the polynomial TOTAL is equal to

//zero.

while(TOTAL<>0)

{

//the SINGULAR command ’leadexp’ returns the exponent vector of

//the leading monomial of a polynomial. The result of the

//following command will be a vector of size 4b (b is from above).

//This vector will have 1’s where the first, second and third

//tensors are found.

T=leadexp(TOTAL);

//to find the first tensor, we look at the vector given by the

//elements of the variable string with a (1) added.

tensor1=T[(b+1)..2*b];

//to find the second tensor, we look at the vector given by the

//elements of the variable string with a (2) added.

tensor2=T[(2*b+1)..3*b];

//to find the third tensor, we look at the vector given by the

//elements of the variable string with a (3) added.

tensor3=T[(3*b+1)..4*b];

//we now create a number of lists. Each list will have numerator,

//denominator, tensor1, tensor2, and tensor3 from each term of the

//polynomial TOTAL. The tensors will be from the original list

//(i.e. without brackets). The SINGULAR command ’monomial’

//effectively reverses the command ’leadexp’. What we have done

//here is factorised the polynomial TOTAL into lists.

execute("list Factorised(count)=numerator(leadcoef(TOTAL)),

denominator(leadcoef(TOTAL)),"

+string(monomial(tensor1))+","

+string(monomial(tensor2))+","

+string(monomial(tensor3))+";");

count++;

//we need to subtract the leading term from TOTAL.

TOTAL=TOTAL-lead(TOTAL);

}

//so that we can return values, we need to convert back to the

//associative ring we began with

setring SolutionRing;

//we define a string to hold the value of non-solutions

string lhsOfEquation="";

//we need a ’for’ loop that is the size of the polynomial TOTAL. This

//is the same as the number of lists defined above called

//’Factorised(i)’

for(i=1; i<=number(p); i=i+1)

{

//we need to undefine the lists ’solInputRing(i)’ if they have

//been previously defined to avoid getting a message from SINGULAR

//"redefining ..."
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if(defined(solInInputRing(i))==1){kill solInInputRing(i);}

//create a number of lists which map the lists defined above to

//the solution ring

list solInInputRing(i)=imap(internalRing,Factorised(i));

export(solInInputRing(i));

//the value of the non-solution is made into a string. It is in

//the format: numerator, denominator, tensor1, tensor2, tensor3,

//[linebreak] etc.

lhsOfEquation=lhsOfEquation+string(solInInputRing(i))+newline;

}

}

//this string is then exported to be used in the procedure ’showValue’

export(lhsOfEquation);

return("Is not a solution to the AYBE");

}

proc IsSolutionAYBE(list#)

"USAGE: IsSolutionAYBE(#); # is a list.

ASSUME: # is the list of the possible solution to be checked in the %

format:

numerator,denominator, first tensor,second tensor. The elements %

of

this list are from the associative ring created.

RETURN: a string of text which tells the user whether the inputted %

variables

are a solution to the AYBE or not. If the expression is not a

solution to the AYBE, then the value is exported.

EXAMPLE: example IsSolutionAYBE; shows an example."

{

//the input must be grouped into lists of size 4.

if(size(#)%4!=0){ERROR("The input must be a list entered as: numerator,

denominator,variable1,variable2. See help ybe; for more %

information");}

else

{

int TYPE;

if(find(charstr(basering),"x_1")){TYPE=1;}

if(find(charstr(basering),"y")){TYPE=2;}

//create a list of the list entered. We need to have a name for this

//list so it can be used in the procedure ’internalSolutionAYBE’.

list SOL=#;

//we return the output of this internal procedure with TYPE=2

return(internalSolutionAYBE(TYPE,SOL));

}

}

example

{

"EXAMPLE:";

echo=2;

def assocRing2=createRingA2par(2);

setring assocRing2;

IsSolutionAYBE(1,2z,e_1_1,e_1_1,\
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1,2z,e_1_1,e_2_2,\

1,2z,e_2_2,e_1_1,\

1,2z,e_2_2,e_2_2,\

1,w,e_1_1,e_1_1,\

1,w,e_2_2,e_2_2,\

1,w,e_1_2,e_2_1,\

1,w,e_2_1,e_1_2);

def assocRing3=createRingA3par(2);

setring assocRing3;

IsSolutionAYBE(1,2z,e_1_1,e_1_1,\

1,2z,e_1_1,e_2_2,\

1,2z,e_2_2,e_1_1,\

1,2z,e_2_2,e_2_2,\

1,y_2-y_1,e_1_1,e_1_1,\

1,y_2-y_1,e_2_2,e_2_2,\

1,y_2-y_1,e_1_2,e_2_1,\

1,y_2-y_1,e_2_1,e_1_2,\

z-y_1,2,e_2_1,e_1_1,\

-z+y_1,2,e_2_1,e_2_2,\

z+y_2,2,e_1_1,e_2_1,\

-z-y_2,2,e_2_2,e_2_1,\

-z*(z-y_1)*(z+y2),2,e_2_1,e_2_1);

}

//////////////////////////////////////////////////////////////////////////////

//PROCEDURES FOR THE YBE

///////////////////////////////////////////////////////////////////////////////

proc showValue

"USAGE: showValue();

ASSUME: The user has just performed one of the above procedures to check

whether an expression is a solution to the CYBE. This procedure

uses the exported value ’lhsOfEquation’.

RETURN: a string which is defined in the procedure %

’internalSolutionCYBE’.

This string is the value of a non-solution.

NOTE: this procedure gives values of rational solutions only.

EXAMPLE: example showValue; shows an example."

{

//this procedure returns the string constructed in the procedure

//’internalSolutionCYBE’

return(lhsOfEquation);

}

example

{

"EXAMPLE:";

echo=2;

rationalSolution(1,z_2,f,e,\

z3,2,h,e);

showvalue();

}
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//we now introduce some procedures which are required in order to convert the

//string attained in the procedure ’showValue’ to LaTex format.

//the following procedure breaks the coefficients down into their %

components so

//that we can write them in LaTeX format.

static proc parseCoefficient(int TYPE,string s)

"USAGE: parseCoefficient(TYPE,s); TYPE is a number,s is a string.

ASSUME: TYPE is 1 if the basering is the rational ring, TYPE is 2 if the

basering is any other ring. The string s is an integer which is

ended with a ’!’

RETURN: a string which is in LaTeX format."

{

int i=1; int b; string TexCoeff;

//we create a loop that begins at the first element of the string s and %

ends

//when it reaches an "!"

while(s[i]<>"!")

{

//set b to be equal to the position of the element of the string we are

//working on.

b=i;

//this loop takes into consideration the integers on the left hand %

side

//of the string adding them all to a string.

while(s[i]>="0" and s[i]<="9")

{

i++;

TexCoeff=TexCoeff+s[b,i-b];

b++;

}

//if the string contains integers only, we need to exit from this while

//loop.

if(s[i]=="!"){break;}

//otherwise, the string must contain additional parameters. The %

first of

//these needs to be added to our string.

TexCoeff=TexCoeff+s[i];

i++;

if(TYPE==1)

{

//set b equal to the position of the next element

b=i;

//we now look at whether the parameter just added has a power. If

//SINGULAR finds integers after this parameter, then it adds to the

//position.

while(s[i]!="!" and s[i]>="0" and s[i]<="9"){i++;}

//now if there is a difference between the position in the string

//before the above while loop /we know that this must be a power.

if(i-b)

{
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//we add brackets to ensure that this is correctly written in

//LaTeX format.

TexCoeff=TexCoeff+"^{"+s[b,i-b]+"}";

}

}

if(TYPE==2)

{

if(s[i]=="1" or s[i]=="2" or s[i]=="3")

{

TexCoeff=TexCoeff+s[i]; i++;

}

if(s[i]=="^")

{

i++;

b=i;

while(s[i]!="!" and s[i]>="0" and s[i]<="9"){i++;}

TexCoeff=TexCoeff+"^{"+s[b,i-b]+"}";

}

if(s[i]=="*")

{

TexCoeff=TexCoeff+"\\cdot ";

i++;

}

}

}

return(TexCoeff);

}

proc texYBE(string fname,string s)

"USAGE: (s); s is a string.

ASSUME: the string s is from the procedure ’showValue’.

RETURN: if fname= then a string is returned, the string s in LaTeX-

typesetting. Otherwise this string is sent to the file <fname>, %

and

nothing is returned.

NOTE: In fname the .tex, if not given, is added to the file name.

EXAMPLE: example texYBE; shows an example."

{

//introduce necessary variables.

int i,j,k,l,m,TYPE; string %

num,den,fTensor,sTensor,tTensor,sign,monom1,monom2,

Texnum,Texden,TexSol; number changeSign;

//we need to know what type of ring we are working in. TYPE 1 is rational

//ring, TYPE 2 is any other ring. The procedure parseCoefficient works

//differently for each type.

if(charstr(basering)=="0,u,v"){TYPE=1;}

else{TYPE=2;}

//we create a loop that continues until the size of the string s is 1. %

This

//one element is a ’newline’ and so not required for the output.

while(size(s)>1)

{
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//we use the SINGULAR command ’find’ to look for the commas in the %

string

i=find(s,",");

//we create an ’if’ statement to disregard any brackets around

//coefficients

if(s[1]=="("){num=s[2..(i-2)];}

//the numerator of the first element of the value is found by taking %

all

//elements of the string up to this comma.

else{num=s[1..(i-1)];}

//we then look for the next comma in the string

j=i+(find(s[i+1,size(s)],","));

//again, we disregard brackets, and take the denominator to be the

//elements from the first

//to the second comma.

if(s[i+1]=="("){den=s[(i+2)..(j-2)];}

else{den=s[(i+1)..(j-1)];}

//the three tensors from the tensor product are found using the third %

and

//fourth commas and the end of the line.

k=j+(find(s[j+1,size(s)],","));

l=k+(find(s[k+1,size(s)],","));

m=l+(find(s[l+1,size(s)],newline));

fTensor=s[(j+1)..(k-1)];

sTensor=s[(k+1)..(l-1)];

tTensor=s[(l+1)..(m-1)];

//if we are converting a value from one of the associative rings, we %

need

//to overcome the problem of the double superscript in the variable %

names

if(find(fTensor,"_"))

{

fTensor=fTensor[1]+"_{"+fTensor[3]+fTensor[5]+"}";

sTensor=sTensor[1]+"_{"+sTensor[3]+sTensor[5]+"}";

tTensor=tTensor[1]+"_{"+tTensor[3]+tTensor[5]+"}";

}

//we now work on these five elements.

//we check if the coefficient is positive or negative.

if(num[1]=="-")

{

//if the numerator is negative, we convert it to a polynomial

execute("changeSign="+num+";");

//and then multiply this polynomial by -1

changeSign=changeSign*(-1);

//we then redefine the numerator

num=string(changeSign);

//and save the sign as a ’minus’

sign="-";

}

else{sign="+";}

//we then take each element of the numerator and convert it to LaTeX

//format using the procedure ’parseCoefficient’
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while(size(num)!=0)

{

//to extract each element of the numerator separately, we use the

//command ’find’ to look for + or - signs, if there are no such

//signs, then we save the numerator and delete ’num’.

if(find(num,"+")==0 and find(num,"-")==0){monom1=num;num="";}

//if there is a + sigm, then we save the first part of the

//numerator and then delete this first part from ’num’.

if(find(num,"+")){monom1=num[1..(find(num,"+"))];

num=num[(find(num,"+")+1)..size(num)];}

//Similarly, if a - sign is found.

if(find(num,"-")){monom1=num[1..(find(num,"-"))];

num=num[(find(num,"-")+1)..size(num)];}

//we add an exclamation mark to this saved part of the numerator

monom1=monom1+"!";

//then we convert it to LaTeX-typesetting and add it to a string.

Texnum=Texnum+string(parseCoefficient(TYPE,monom1));

}

//the same procedure is carried out for each denominator.

while(size(den)!=0)

{

if(find(den,"+")==0 and find(den,"-")==0){monom2=den;den="";}

if(find(den,"+")){monom2=den[1..(find(den,"+"))];

den=den[(find(den,"+")+1)..size(den)];}

if(find(den,"-")){monom2=den[1..(find(den,"-"))];

den=den[(find(den,"-")+1)..size(den)];}

monom2=monom2+"!";

Texden=Texden+string(parseCoefficient(TYPE,monom2));

}

//we then begin to build our latex polynomial.

TexSol=TexSol+sign+"\\frac{"+Texnum+"}{"+Texden+"}"+fTensor+"\\otimes

"+sTensor+"\\otimes %

"+tTensor;

Texnum=""; Texden="";

//at the end of each loop we redefine the string s without the 7

//expressions already used.

s=s[(find(s,newline)+1)..size(s)];

}

//if the user has not previously instructed SINGULAR not to print $ signs,

//then we add them to each end of the polynomial.

if(not(defined(NoDollars))){TexSol="$"+TexSol+"$";}

//if the user has specified a file name for the text to be printed to,

if(size(fname))

{

//we first check if they have added ".tex" to the file name, and if %

not,

//it is added.

if(size(fname)>4)

{

if(fname[size(fname)-3,4]!=".tex"){fname=fname+".tex";}

}

else{fname=fname+".tex";}
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//the LaTeX text is written to the user-named file.

write(fname,TexSol);

print("Latex file generated");

}

else

{

return(TexSol);

}

}

example

{

"EXAMPLE:";

echo=2;

rationalSolution(1,z,f,e,\

z_2,3,f,h);

string s=showValue();

texCYBE("",s);

}

//////////////////////////////////////////////////////////////////////////////

//CASIMIR ELEMENT PROCEDURES

//////////////////////////////////////////////////////////////////////////////

static

proc dualBasis(int n)

"USAGE: dualBasis(n); n is an integer.

ASSUME: n^2-1 is the dimension of the special linear Lie algebra we are %

working

in.

RETURN: gives a part of the dual basis of the h(i) in the format of a %

list.

NOTE: To see the complete dual basis of h(i) we must multiply this by %

1/n

is called from casimirEl and casimirZTest."

{

if(n<2)

{

print("incorrect input");

return(0);

}

list RESULT; int i,j;

//for sl(2) the dual basis of h is h and no calculations

//are required.

if(n==2)

{

RESULT=h;

}

//otherwise, we create a number of loops to calculate the dual basis

//based on the following formula:

//h(i)*=1/n(sum{j=1..i}(n-i)e_j_j-sum{j=i+1..n}ie_j_j) which

//we have input as:
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//h(i)*=1/n(sum{j=1..i}j(n-i)h_j+sum{j=i+1..n-1}i(n-j)h_j)

else

{

//create our lists.

for(i=1; i<=(n-1); i++)

{

execute("list @h("+string(i)+");");

}

//calculate the dual basis of h(i).

for(i=1; i<=(n-1); i++)

{

for(j=1; j<=i; j++)

{

@h(i)[j]=j*(n-i)*h(j);

}

for(j=i+1; j<=(n-1); j++)

{

@h(i)[j]=i*(n-j)*h(j);

}

RESULT[i]=@h(i);

}

}

//we return a list of (n-1) lists, which together make up the dual basis

//of the h(i). Each of these lists has (n-1) number of elements

return(RESULT);

}

proc casimirZTest(int n)

"USAGE: casimirZTest(n); n is an integer.

ASSUME: n^2-1 is the dimension of the special linear Lie algebra we are

calculating from.

RETURN: a list which is the solution to the CYBE ’t/z’ where ’t’ is the

Casimir element of sl(n). The list is in the correct format so %

it

can be put directly into procedures based on the CYBE.

NOTE: this procedure works only in the basering sl(n).

EXAMPLE: example casimirZTest; shows an example."

{

list partA, partB, casimirZTest; int i,j;

//create a list of lists from the above procedure.

list dualBasisH=dualBasis(n);

//for sl(2) the Casimir element is defined explicitly.

if(n==2)

{

casimirZTest=1,2z,h,h,1,z,e,f,1,z,f,e;

}

else

{

//we will add the numerator and denominator of each tensor to our list

//for use with the CYBE procedure. We also incorporate the ’1/n’ which

//is in the formula for the dual basis of the h(i). We add 4 at each
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//loop so that these elements appear in the numerator and denominator

//position for each tensor.

for(i=1; i<=4*(n-1)^2; i=i+4)

{

partA[i]=1;

partA[i+1]=n*z;

}

//we introduce a counter

int count=3;

//this double loop adds each h(i) to its dual found in the procedure

//dualBasis. These elements must go in the position for first and second

//tensor in our list.

for(i=1; i<=(n-1); i++)

{

for(j=1; j<=(n-1); j++)

{

partA[count]=h(i); count++;

partA[count]=dualBasisH[i][j]; count=count+3;

//we must add 3 to our counter so that these two elements

//appear in the correct position for tensor1 and tensor2

}

}

//the second part of our list is the tensor product of all other basis

//elements with their dual. Again we need to add the 1/z as numerator

//and denominator for each element.

for(i=1; i<=4*n*(n-1); i=i+4)

{

partB[i]=1;

partB[i+1]=z;

}

//we redefine our counter.

count=3;

//we must add all the variables x(i) and the dual of these variables

//(the y(i))

for(i=1; i<=n*(n-1)/2; i++)

{

partB[count]=x(i); count++;

partB[count]=y(i); count=count+3;

//we must add 3 to our counter so that these two elements appear

//in the correct position for tensor1 and tensor2.

}

for(i=1; i<=n*(n-1)/2; i++)

{

partB[count]=y(i); count++;

partB[count]=x(i); count=count+3;

}

//the addition of the two parts to this list gives us the 1/z times the

//Casimir element.

casimirZTest=partA+partB;

}

return(casimirZTest);

}
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example

{

"EXAMPLE:"; echo=2;

casimirZTest(2);

}

proc casimirZTest2par(int n)

"USAGE: casimirZTest2par(n); n is an integer.

ASSUME: n^2-1 is the dimension of the special linear Lie algebra we are

calculating from.

RETURN: a list which is the solution to the 2 parametric CYBE ’t/z_1-z_2’

where ’t’ is the Casimir element of sl(n). The list is in the

correct format so it can be put directly into procedures based on

the CYBE.

NOTE: this procedure works only in the basering sl(n).

EXAMPLE: example casimirZTest2par; shows an example."

{

list partA, partB, casimirZTest2par; int i,j;

//create a list of lists from the above procedure.

list dualBasisH=dualBasis(n);

if(n==2)

{

casimirZTest2par=1,2*z_1-2*z_2,h,h,1,z_1-z_2,e,f,1,z_1-z_2,f,e;

}

else

{

//we will add the numerator and denominator of each tensor to our list

//for use with the CYBE procedure. We also incorporate the ’1/n’ which

//is in the formula for the dual basis of the h(i). We add 4 at each

//loop so that these elements appear in the numerator and denominator

//position for each tensor.

for(i=1; i<=4*(n-1)^2; i=i+4)

{

partA[i]=1;

partA[i+1]=n*z_1-n*z_2;

}

//we introduce a counter

int count=3;

//this double loop adds each h(i) to its dual found in the procedure

//dualBasis. These elements must go in the position for first and second

//tensor in our list.

for(i=1; i<=(n-1); i++)

{

for(j=1; j<=(n-1); j++)

{

partA[count]=h(i); count++;

partA[count]=dualBasisH[i][j]; count=count+3;

//we must add 3 to our counter so that these two elements

//appear in the correct position for tensor1 and tensor2.

}

}

//the second part of our list is the tensor product of all other basis
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//elements with their dual. Again we need to add the 1/z as numerator

//and denominator for each element.

for(i=1; i<=4*n*(n-1); i=i+4)

{

partB[i]=1;

partB[i+1]=z_1-z_2;

}

//we redefine our counter.

count=3;

//we must add all the variables x(i) and the dual of these variables

//(the y(i))

for(i=1; i<=n*(n-1)/2; i++)

{

partB[count]=x(i); count++;

partB[count]=y(i); count=count+3;

//we must add 3 to our counter so that these two elements appear

//in the correct position for tensor1 and tensor2.

}

for(i=1; i<=n*(n-1)/2; i++)

{

partB[count]=y(i); count++;

partB[count]=x(i); count=count+3;

}

//the addition of the two parts to this list gives us the 1/z times the

//Casimir element.

casimirZTest2par=partA+partB;

}

return(casimirZTest2par);

}

example

{

"EXAMPLE:"; echo=2;

casimirZTest2par(2);

}

proc casimirEl(int n)

"USAGE: casimirEl(n); n is an integer.

ASSUME: n^2-1 is the dimension of the special linear Lie algebra we are

calculating from.

RETURN: a string which is the Casimir element of the special linear %

algebra

sl(n).

EXAMPLE: example casimirEl; shows an example."

{

list partA, partB, casimir; int i,j;

//create a list of lists from the above procedure.

list dualBasisH=dualBasis(n);

if(n==2)

{

casimir=1,2,h,h,1,1,e,f,1,1,f,e;

}

else
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{

//for the first part of our list the numerator is 1 and the

//denominator is n

for(i=1; i<=4*(n-1)^2; i=i+4)

{

partA[i]=1;

partA[i+1]=n;

}

int count=3;

//this double loop adds each h(i) to its dual found in the procedure

//dualBasis. These elements must go in the position for first and

//second tensor in our list.

for(i=1; i<=(n-1); i++)

{

for(j=1; j<=(n-1); j++)

{

partA[count]=h(i); count++;

partA[count]=dualBasisH[i][j]; count=count+3;

}

}

//for the second part of our list the numerator and denominator are

//both 1

for(i=1; i<=4*n*(n-1); i=i+4)

{

partB[i]=1;

partB[i+1]=1;

}

//we redefine our counter.

count=3;

//we must add all the variables x(i) and the dual of these variables

//(the y(i))

for(i=1; i<=n*(n-1)/2; i++)

{

partB[count]=x(i); count++;

partB[count]=y(i); count=count+3;

}

for(i=1; i<=n*(n-1)/2; i++)

{

partB[count]=y(i); count++;

partB[count]=x(i); count=count+3;

}

//the addition of the two parts to this list gives us the Casimir

//operator.

casimir=partA+partB;

}

return(casimir);

}

example

{

"EXAMPLE:"; echo=2;

def ratRing=createRingRational("sl(2)");

setring ratRing;
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casimirEl(2);

}

//////////////////////////////////////////////////////////////////////////////

//PROCEDURES FOR CHECKING SOLUTIONS WITH 2 PARAMETERS IN sl(n)

/////////////////////////////////////////////////////////////////////////////

proc ratSolType1(int n)

"USAGE: ratSolType1(n); n is an integer.

ASSUME: n is the dimension of the expression to be created

RETURN: a list based on the equation of Thilo Henrich which is a

solution to the rational CYBE with 2 parameters.

EXAMPLE: example ratSolType1; shows an example."

{

int i,j,k,l;

int count=1;

if(n==2){execute("poly e_1_2="+string(e)+";");

execute("poly e_2_1="+string(f)+";");

execute("poly h_1="+string(h)+";");

}

else{

//create necessary polynomials

for(i=1; i<=(n-2); i++)

{

for(k=0; k<=(n-i-1); k++)

{

execute("poly %

e_"+string(k+1)+"_"+string(k+1+i)+"=x("+string(count)+");");

execute("poly %

e_"+string(k+1+i)+"_"+string(k+1)+"=y("+string(count)+");");

count++;

}

}

execute("poly e_1_"+string(n)+"=x("+string((n^2-n)/2)+");");

execute("poly e_"+string(n)+"_1=y("+string((n^2-n)/2)+");");

}

list dualBasisH=dualBasis(n);

list ratSol;

//first bracket

count=1;

for(i=1; i<=(n-1); i++)

{

ratSol[count]=-z_1;count++;

ratSol[count]=n;count++;

ratSol[count]=e_1_2;count++;

ratSol[ count]=dualBasisH[1][i]; count++;

}

for(j=3; j<=n; j++)

{

for(k=1; k<=(n-j+1); k++)

{
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ratSol[count]=-z_1;count++;

ratSol[count]=1; count++;

execute("ratSol[count]=e_1_"+string(j)+";"); count++;

execute("ratSol[count]=e_"+string(j+k-1)+"_"+string(k+1)+";"); count++;

}

}

//second bracket

for(i=1; i<=(n-1); i++)

{

ratSol[count]=z_2;count++;

ratSol[count]=n;count++;

ratSol[count]=dualBasisH[1][i]; count++;

ratSol[count]=e_1_2;count++;

}

for(j=3; j<=n; j++)

{

for(k=1; k<=(n-j+1); k++)

{

ratSol[count]=z_2;count++;

ratSol[count]=1; count++;

execute("ratSol[count]=e_"+string(j+k-1)+"_"+string(k+1)+";"); count++;

execute("ratSol[count]=e_1_"+string(j)+";"); count++;

}

}

//third bracket

for(j=2; j<=(n-1); j++)

{

for(k=1; k<=(n-j); k++)

{

ratSol[count]=1; count++;

ratSol[count]=1; count++;

execute("ratSol[count]=e_1_"+string(j)+";"); count++;

execute("ratSol[count]=e_"+string(j+k)+"_"+string(k+1)+";"); count++;

}

}

for(i=2; i<=(n-1); i++)

{

for(j=1; j<=(n-1); j++)

{

ratSol[count]=1;count++;

ratSol[count]=n;count++;

execute("ratSol[count]=e_"+string(i)+"_"+string(i+1)+";"); count++;

ratSol[count]=dualBasisH[i][j];count++;

}

}

for(i=2; i<=(n-2); i++)

{

for(k=2; k<=(n-i); k++)

{

for(l=1; l<=(n-i-k+1); l++)

{

ratSol[count]=1; count++;
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ratSol[count]=1; count++;

execute("ratSol[count]=e_"+string(i)+"_"+string(i+k)+";"); count++;

execute("ratSol[count]=e_"+string(i+k+l-1)+"_"+string(l+i)+";"); count++;

}

}

}

//fourth bracket

for(j=2; j<=(n-1); j++)

{

for(k=1; k<=(n-j); k++)

{

ratSol[count]=-1; count++;

ratSol[count]=1; count++;

execute("ratSol[count]=e_"+string(j+k)+"_"+string(k+1)+";"); count++;

execute("ratSol[count]=e_1_"+string(j)+";"); count++;

}

}

for(i=2; i<=(n-1); i++)

{

for(j=1; j<=(n-1); j++)

{

ratSol[count]=-1;count++;

ratSol[count]=n;count++;

ratSol[count]=dualBasisH[i][j];count++;

execute("ratSol[count]=e_"+string(i)+"_"+string(i+1)+";"); count++;

}

}

for(i=2; i<=(n-2); i++)

{

for(k=2; k<=(n-i); k++)

{

for(l=1; l<=(n-i-k+1); l++)

{

ratSol[count]=-1; count++;

ratSol[count]=1; count++;

execute("ratSol[count]=e_"+string(i+k+l-1)+"_"+string(l+i)+";");count++;

execute("ratSol[count]=e_"+string(i)+"_"+string(i+k)+";"); count++;

}

}

}

return(ratSol);

}

example

{

"EXAMPLE:"; echo=2;

def ratRing2par4=createRingRational2par("sl(4)");

setring ratRing2par4;

ratSolType1(4);

}

proc ratSolType2(int n)

"USAGE: ratSolType2(n); n is an integer.
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ASSUME: n is the dimension of the expression to be created

RETURN: a list based on the equation of Thilo Henrich which is a

solution to the rational CYBE with 2 parameters.

EXAMPLE: example ratSolType2; shows an example."

{

int i,j,k,l;

int count=1;

if(n==2){execute("poly e_1_2="+string(e)+";");

execute("poly e_2_1="+string(f)+";");

execute("poly h_1="+string(h)+";");

}

else{

//create necessary polynomials

for(i=1; i<=(n-2); i++)

{

for(k=0; k<=(n-i-1); k++)

{

execute("poly %

e_"+string(k+1)+"_"+string(k+1+i)+"=x("+string(count)+");");

execute("poly %

e_"+string(k+1+i)+"_"+string(k+1)+"=y("+string(count)+");");

count++;

}

}

execute("poly e_1_"+string(n)+"=x("+string((n^2-n)/2)+");");

execute("poly e_"+string(n)+"_1=y("+string((n^2-n)/2)+");");

}

list dualBasisH=dualBasis(n);

list ratSol;

//first bracket

count=1;

for(i=1; i<=(n-1); i++)

{

ratSol[count]=-z_2;count++;

ratSol[count]=n;count++;

ratSol[count]=dualBasisH[(n-1)][i]; count++;

execute("ratSol[count]=e_"+string(n)+"_"+string(n-1)+";"); count++;

}

for(i=1; i<=(n-2); i++)

{

for(j=1; j<=i; j++)

{

ratSol[count]=z_2;count++;

ratSol[count]=1; count++;

execute("ratSol[count]=e_"+string(j)+"_"+string(j+n-i-1)+";"); count++;

execute("ratSol[count]=e_"+string(n)+"_"+string(i)+";"); count++;

}

}

//second bracket

for(i=1; i<=(n-1); i++)

{

ratSol[count]=z_1;count++;
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ratSol[count]=n;count++;

execute("ratSol[count]=e_"+string(n)+"_"+string(n-1)+";"); count++;

ratSol[count]=dualBasisH[(n-1)][i]; count++;

}

for(i=1; i<=(n-2); i++)

{

for(j=1; j<=i; j++)

{

ratSol[count]=-z_1;count++;

ratSol[count]=1; count++;

execute("ratSol[count]=e_"+string(n)+"_"+string(i)+";"); count++;

execute("ratSol[count]=e_"+string(j)+"_"+string(j+n-i-1)+";"); count++;

}

}

//third bracket

for(i=2; i<=(n-1); i++)

{

for(j=1; j<=(i-1); j++)

{

ratSol[count]=-1; count++;

ratSol[count]=1; count++;

execute("ratSol[count]=e_"+string(j)+"_"+string(j+n-i)+";"); count++;

execute("ratSol[count]=e_"+string(n)+"_"+string(i)+";"); count++;

}

}

for(i=1; i<=(n-2); i++)

{

for(j=1; j<=(n-1); j++)

{

ratSol[count]=1;count++;

ratSol[count]=n;count++;

ratSol[count]=dualBasisH[i][j];count++;

execute("ratSol[count]=e_"+string(i+1)+"_"+string(i)+";"); count++;

}

}

for(i=3; i<=(n-1); i++)

{

for(j=1; j<=(i-2); j++)

{

for(k=1; k<=j; k++)

{

ratSol[count]=-1; count++;

ratSol[count]=1; count++;

execute("ratSol[count]=e_"+string(k)+"_"+string(k+i-j-1)+";"); count++;

execute("ratSol[count]=e_"+string(i)+"_"+string(j)+";"); count++;

}

}

}

//fourth bracket

for(i=2; i<=(n-1); i++)

{

for(j=1; j<=(i-1); j++)
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{

ratSol[count]=1; count++;

ratSol[count]=1; count++;

execute("ratSol[count]=e_"+string(n)+"_"+string(i)+";"); count++;

execute("ratSol[count]=e_"+string(j)+"_"+string(j+n-i)+";"); count++;

}

}

for(i=1; i<=(n-2); i++)

{

for(j=1; j<=(n-1); j++)

{

ratSol[count]=-1;count++;

ratSol[count]=n;count++;

execute("ratSol[count]=e_"+string(i+1)+"_"+string(i)+";"); count++;

ratSol[count]=dualBasisH[i][j];count++;

}

}

for(i=3; i<=(n-1); i++)

{

for(j=1; j<=(i-2); j++)

{

for(k=1; k<=j; k++)

{

ratSol[count]=1; count++;

ratSol[count]=1; count++;

execute("ratSol[count]=e_"+string(i)+"_"+string(j)+";");count++;

execute("ratSol[count]=e_"+string(k)+"_"+string(k+i-j-1)+";"); count++;

}

}

}

return(ratSol);

}

example

{

"EXAMPLE:"; echo=2;

def ratRing2par4=createRingRational2par("sl(4)");

setring ratRing2par4;

ratSolType2(4);

}
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